NOTE ON A DOUBLE COSET DECOMPOSITION OF SEMIGROUPS DUE TO ŠTEFAN SCHWARZ

A. H. CLIFFORD, (1) New Orleans (U.S.A.)

that any homomorphism φ of a completely simple semigroup S onto a group G can be described by a double coset decomposition In a recent paper in this journal, Stefan Schwarz [1] proved the interesting theorem

 $S = H \cup HaH \cup HbH \cup \cdots$ $(a,b,\ldots\in S)$ \equiv

of S with respect to the kernel H of ϕ . The double cosets appearing in (1) are mutually disjoint, and HaH consists precisely of those elements of S mapped by φ into $\varphi(a)$. It is natural to inquire when this happens in general, and the purpose of this note

is to take a small step in this direction. G. Let e be the identity element of G, and let $H=\phi^{-1}(e)$ be the kernel of ϕ . Then **Theorem.** Let S be a regular semigroup, and let φ be a homomorphism of S onto a group (for all a in S)

 $\varphi^{-1}\varphi(a)=HaH$

if and only if H is simple.

Proof. Assuming (2), let $a \in H$. Then

$$HaH = \varphi^{-1}\varphi(a) = \varphi^{-1}(e) = H,$$

so H is simple. (We did not need the regularity of S for this.) Conversely, assume that H is simple, and let $a \in S$. Since

 $\varphi(HaH) = \varphi(H) \varphi(a) \varphi(H) = e\varphi(a) e = \varphi(a).$

so that $\varphi(b) = \varphi(a)$. Since S is regular, there exists c in S such that bcb = b. Then we clearly have $HaH \subseteq \varphi^{-1}\varphi(a)$. To prove the opposite inclusion, let $b \in \varphi^{-1}\varphi(a)$, $\varphi(b) \varphi(c) \varphi(b) = \varphi(b)$ in G, so that

 $\varphi(c) = \varphi(b)^{-1} = \varphi(a)^{-1}$

 $\varphi(ac) = e = \varphi(bc).$

Thus ac and bc belong to H. Since H is simple, there exist x and y in H such that

bc = xacy. Hence b = bcb = xa(cyb)

(1) This paper was prepared with the partial support of the National Science Foundation (U.S.A.).

$$\varphi(cyb) = \varphi(c) \varphi(y) \varphi(b) = \varphi(a)^{-1} e\varphi(a) = e,$$

whence $cyb \in H$, and we conclude that $b \in HaH$. This proves our theorem.

integers into itself defined as follows. property that are not completely simple. Let r, s, t be mappings of the set of non-zero The following example shows that there exist regular semigroups with the Schwarz

$$r(x) = -|x|; \quad s(x) = \begin{cases} x & \text{if } x > 0, \\ -x + 1 & \text{if } x < 0; \end{cases}$$

$$f(x) = \begin{cases} x & \text{if } x > 0, \\ 1 & \text{if } x = -1, \\ -x - 1 & \text{if } x < -1. \end{cases}$$

Setting p = rs, q = rt, $e_0 = pq$, $e_1 = qp$, we find:

$$r^2 = e_0 r = r$$
, $s^2 = st = se_0 = s$, $t^2 = ts = te_0 = t$,
 $e_0^2 = e_0$, $e_1^2 = e_0 e_1 = e_1 e_0 = e_1 + e_0$.

primitive. (p and q generate a so-called "bicyclic" subsemigroup B of S, and one can (in fact bisimple); but it is not completely simple since the idempotent e_0 is not The semigroup S generated by r, s, and t can be shown to be regular and simple

$$S = B \cup Br \cup sB \cup tB \cup sBr \cup tBr.$$

group of order one, and S has the Schwarz property by virtue of being itself simple. Since S is generated by idempotents, the only homomorphic group image of S is the a normal subgroup of G, and every such $N \times S$ is simple. kernel of any homomorphism of T onto a group has the form $N \times S$, where N is For an apparently less trivial example, let $T = G \times S$, where G is any group. Then the

REFERENCE

[1] Stefan Schwarz, Homomorphisms of a completely simple semigroup onto a group, Matematicko-fyz. časopis SAV 12 (1962), 293-300.

Received November 3, 1962.

56

The Tulane University of Louisiana

заметка о разложении полугрупп по двойному модулю

А. Х. Клиффорд

Резюме

и $H=\phi^{-1}(e)$ — ядро ϕ . Потом $\phi^{-1}\phi(a)=HaH$ (для всякого $a\in S$) имеет место тогда и только В статье доказывается следующая теорема: Пусть S регулярная полугруппа и $\, \phi$ гомоморфизм S на группу G. Пусть e единица группы G

тогда, если H — простая полугруппа.

простой так, что $\phi^{-1}\phi(a)=HaH$ для всякого $a\in S$ и для всякого гомоморфизма ϕ полугруппы S на группу. На примере показано, что существует регулярная полугруппа S, которая не является вполне