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HOMOMORPHISMS OF A COMPLETELY
SIMPLE SEMIGROUP ONTO A GROUP

STEFAN SCHWARY, Bratislava

The homomorphisms of a semigroup S onto a group have been studied in a great
number of papers beginning with the general results of P. Dubreil and his school
(see the literature in [2]). The special case of a completely simple semigroup (without
zero) S has been studied by JI. M. I'nyckud (see the remark in his paper [3]),
R. R. Stoll [6} and in a recent paper of G. B. Preston 5]

These authors use the Rees representation theorem and prove the existence of
a maximum group homomorphic image of S.

Now I have found that there is a simple method of describing the homomorphisms
of a completely simple semigroup S onto a group which gives a rather unexpected
and elegant explicit description of the corresponding congruence classes, a description
which is very close to that in the group case. The congruence classes are simply
distinct classes of a double coset decomposition of S with respect to a subsemi-
group H of S. Hereby the use of double cosets is an essential one (see the example
below). ’

Moreover we do not need the Rees representation theorem. Our presentation
is based on the rather elementary description of S by means of minimal one-sided
ideals (as given in section 1 below).

Double coset decompositions of S modulo two subsemigroups of S seem to
appear first in the paper [7]. They are used then in the study of the semigroup of
measures on a compact semigroup. (See [8], [9], [101.)

The key for all the following considerations is Lemma 2, the other considerations
being of a more or less straithforward nature.

1. We shall need the following preliminary results the proof of which can be
found in [1] or [4]. v :
A completely simple semigroup (without zero) S can be written in the form
S = R,=U Ly, where R,, L; are minimal right and left ideals of S respectively.

aedy Beds
Also RL, = R, L = G, is a group, hence S = U U G,;. We shall call
. aedy fed:
the G,4- s group-components of S. They are all isomorphic one with another. Denote
by e, the unit element of the group Gog- Then {e,; | « € A,} is the set of all idempotents

contained in L; each of them being a right unit of L,. Analogously {es]1 Be Az}
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is the set of all idempotents € R, each of them being a left unit of R,. The elements
of a group-component G,, will be always denoted by the indices a, f. If g, € Gup,
then g,5G,s = Gas» and analogously G,s8,5 = G-

The following general results have been explicitly proved in the paper [7}. Let H
be any simple subsemigroup of a completely simple semigroup S containing all
idempotents of S. Then

I) H is itself a completely simple semigroup (without zero).

1) If a,beS, then Hao Hb £ @ implies Ha = Hb and HaH ~ HbH + @
implies HaH = HbH.

II) S admits a (uniquely determined) decomposition into disjoint summands
of the form

S=HuHaHuUHbHU ..., a,b,...eS.

Hereby HaH = HbH if and only if be HaH: in particular H = HaH if and only
if ae H.

IV) If Gy = Gup O\ H, then HaH 0 G,y = GoyaGlg and we have
Gy = Guy U GppalGpp U GbGog v

Note further: If a is any clement € S, then a3 = €5 @ €35 € G, and Ha,zH =
= He,zae H < HaH, hence Ha,H = HaH. “This says that every class HaH has
a non-empty intersection with any G (xe A, BeA,) and every class HaH can
be “generated” by means of an element a chosen from a fixed group, say Gy,.
(In the following we shall suppose always that 1€ 4, N A4;.)

Finally we note: If HA R, = Ry, Hn Ly = Ly, then H= U R, = U Ly =

aeAd; BeAr

U U Gig, where R;, Ly are the Bmsmﬁm_amrﬁmnaﬁmEom_mo*.m_.nmmnom,\o_w
aedy fedr .

and G, are the group-components of H.

2. Let now G be a group with the unit element e, G = {e, a,b,..}. Let ¢ be
a homomorphism of S onto G and let be ¢~ (e) = H. His clearly a subsemigroup
of S containing all ideffipotents € S.. )

Lemma 1. H is a simple Subsemigroup of S.

Proof. We first prove that a € aHa for every a € H (i. e. H is a regular semi-
group). Let be a€ H. Then a is contained in some group, say a € G,z. Denote by a~ !
the element € G4 such that aa™" = e,5. Now 0(@) oa=t) = olegy), i.e.e.ol@!) =
= ¢, implies (@~ ") = e, hence a~' € H. Since a = aa~'a, we have a € aHa.

Let hu.cn a minimal left ideal of S and denote Ly N H=FL + §J. Clearly L;
is a left ideal of H.* We prove that Lj is a minimal left ideal of H. Suppose that

* For if ae H, x€ L, we have axealy Caly C Ly, further axe H .H C H, hence axée HN
N Ly;=Lg.
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this were not the case. Then there exists a left ideal L” of H such that L"<Lj,
L" + L;. Choose any element a e L” « H. By regularity there is an element y € H

such that @ = aya. The relation ya = yaya implies that ya is an idempotent and

¢" = yae yL" < L". Therefore Lye" = LyL"<L". On the other hand every idempotent

€L, is a right unit of the semigroup L;, hence Lye" =Ly, and finally Eye L

This contradiction proves that L, is a minimal left ideal of H.

NowH=SnH= U (oH)=U Ly says that H is a union of its minimal
1 Bedz Bedz
left ideals. Since it is well known that a semigroup (without zero) containing a

minimal left ideal is simple if and only if it is the sum of its minimal left ideals, we
conclude that H is a simple semigroup. [Moreover it follows immediately (see [7],
Lemma 1,1) that H is completely simple.]

If 2e G and ¢~'(a) contains an element a € S, then ¢~ '(a) contains also aff,
Ha, HaH ; hence we have necessarily HaH < ¢~ 1(a). Note also that since H contains
a left unit and a right unit for every ae S, we have aeal < HaH and
a€ Ha « HaH. ; .

The following Lemma is of a decisive importance for all what follows:

Lemma 2. The set ¢~ '(a) is exactly one class HaH (with a suitably chosen a € S).

Proof. Suppose that ¢~ 1(a) contains at least two distinct classes HayH and .
Ha,H. Denote by (a)~* the inverse clement of 4 in the group G. Again o @1
contains at least one class HBH. The relation (@)~ 15 = cimplies o~ '[(a)~']. ¢~ Y(a)<=
< ¢~ o), i- e ) ‘

{HbH v ...} {Ha,H v Ha,H v ..} H.

Since Hb < HbH, a,H < Ha,H, a,H < Ha,H, we also have
{(Hbu ..} {gyHua,Hu ..} c H,

and the relations Hba,H < H, Hba,H = H imply -Hba,H = Hba,H = H.

Without loss of generality (see above) we can suppose that b, a,, a, are elements
€ G,,. Denote ba, = he H. Denote further by a} the inverse of a, in Gy;. Then
ba,d, = ha, bey; = hay and b = ha,. Hence Hb = Hha, < Ha), which implies
Hb = Haj.

Now (Hb) (a,H) = H implies (Hd)) (a,H) = H, hence a,a, = W'e H. Further
ah = ajaia; = e, = a3 implies a,H = a,i'H < a,H and Ha,H < HaH,
hence Ha,H = Ha,H. This proves our Lemma.

3. For convenience we introduce the following.

Definition.* A simple subsemigroup H of S is called almost normal in S if

1) H contains all idempotents € S. ‘

mMGy=GynHisa normal subgroup of G, for at ledst one couple o, B.

*) For our case (the case of a completely simple semigroup S) the almost normal subsemi-
groups are of course the same as Dubreil's “normal unitary” subsemigroups of S, since these
are just the kernels of homomorphisms of S onto a group. (See 2], p. 257))
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The restriction to one couple «, # is a formal one as the next lemma shows.

Lemma 3. An almost normal subsemigroup intersects each group G,, in a normal
subgroup of G,g.

Proof. Suppose that Gj; = G;; n H is a normal subgroup of G,,. We prove
that for any o € 4, g € 4, the group G,, = G,, n H is a normal subgroup of G,.
Let be ceG,,. Then eg,ce;; €Gy; and by supposition Gi,(e;;ce ) =

= (eysceyy) G1y, 1. e. Giicey;, = eg¢Gyy. Since ¢ =e,,c = ce,,, we have
G11(€0eClsq) €11 = €11(€sgCes,) Gy;. Multiplying both sides by e,, we get
(€40G11€50) C(€50€11850) = (€4¢€114) nAméQ:mév“ i. o. G, GnIxﬁQ:: 2:08 x =
1 - —
= €,4€11€4 € G,. Define x=* by x~! € G;, and xx~' = e,,. Then the last relation

implies (x~1G, ) c(xx~") = (x7'x) (G, x~"), i. e. Gy ¢ = ¢G,, q. €. d.

Example. The following example enables a clearer insight into the role of the
almost normal subsemigroups and the role of the double cosets. Consider the
completely simple semigroup S = {a,, a,, a3, a,} with the multiplication table:

_ ag a, az 4,
a, | a, a, a; a,
a, | a, a; a, a
a; | ay a, a; o,
a, | a, a, a, as

This semigroup admits a homomorphism ¢ onto a group of order two which we
denote by G = {e,a}. Hereby ¢~ '(e) = {a;, a3} = H and ¢ '(a) = Ha,H =
= Ha,H = {a,, a,}. In our notations we have G, = {a, a,}, Gy, = {a;, a,}.
The intersections G, = H Gy, = {a;}, Q_‘N = Hn Gy, = {a;} are normal

subgroups of G, and G, respectively. Hence H is an almost normal subsemigroup

of S. The subsemigroup H is not “normal” in the sense that Hb = bH since Ha, =
= {a,} and a,H = {a,, a,}. This makes it clear that the use of double cosets
is an essential one and that there is in general not possible to reduce a double coset
to a unique one-sided coset.

Before proving the maintheorem it is useful to prove the following.

Lemma 4. If a€G,,, beG,, a.: and H is an almost normal subsemigroup of S,
then HaH . HbH = HcH with ¢ = ae,,b.

0y

Proof. If ae G,,, then

HaH = J G,4aG,; = U (Gope,0ae,,Gr5) = U G,,0G
B ap a,d

v yé

Analogously for b€ G, ,, we have HbH = |J G,,,,bG,

a8y

En_ 10"
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Therefore

HaH . HbH = ) G,,aG,,G, ,bG, ;, = U G,aG.,bG, ;.

a,d a,dy
a1, 81

Now QQME (€,42) €,,,G,,, , and since e,,ae,,, € G,,, , we have by almost normality
’ .
aG,,, = (e,00€4,,)- This implies

Ge1 nnu

HaH . HbH = C Qnm QEANQQQNQEV @QM.? = C an_hm\_m— HeH

a, 8y a, d1

with ¢ = e, ,a¢,,b € Gy, ,, .

, Theorem. If ¢ is a \SSQEQGEQS of a completely simple semigroup S onto-
a group Q with unit element e, then H = ¢~ '(e) is an almost normal subsemigroup of S.
For any a € G we have @ Ya) = HaH with a suitably chosen ae S. The group G
is isomorphic with the group of classes in the double coset decomposition

S=HyuHaHuUHbH WU ... 1)

Conversely: If H is an almost normal subsemigroup of S, then the classes in the
decompositon (1) are congruence classes of a homomorphism of S onto a group G.

Proof. a) Let 9 (e) = H and H N G,, = G{,. By Lemma 2 for any a € G the
set ¢~(a) is a double coset class of the form HaH with suitably chosen a € S. Since:
each class HaH has a non-empty intersection with a fixed chosen group-component,.
say G,,, the homomorphism ¢ restricted to G, is a homomorphism of the group G,
onto the group G. Hence G, is a normal subgroup of G,,. Therefore H is an almost
normal subsemigroup of S. The isomorphism of G with the group of cosets in (1)
is an immediate consequence of the suppositions.

b) Let H be an almost normal subsemigroup of S and consider the decomposition.
of S into disjoint classes as given by (1).

By Lemma 4 the classes form a semigroup with H as unit element. To prove that
they form a group it is sufficient to prove that to every class HaH there is a class.
Ha*H such that Hall . Ha*H = Ha*H . HoH = H. Let be a € G,,. Denote by a*
the inverse element of @ in G,, and consider the product HaH . Ha*H. By Lemma 4
(with a* instead of b) we have HaH . Ha*H = HcH with ¢ = ¢, ae, ,a* =
= HcH = H. Analogously Ha*H . HaH = H. This proves our theorem.

hence

Qnu

5. Consider the intersection H, of all almost normal subsemigroups of S. The
semigroup H, is non-empty, since it contains the subsemigroup H,, generated.
by all idempotents € S. (Of course Hy, need not be almost normal.)

We prove that H, is a (uniquely determined) almost normal subsemigroup of S.
Let {H™, ve X} be the set of all almost normal subsemigroups of S. Write H® =
= U L= U U G Denote NL =L and G = G. Clearly G

Pedz aecAy fedAs vel vel

297



is a normal subgroup of the group G,,. Hence it remains only to show that H®
is simple. We have*

Hy=NHY=NIUL=U (NLM = U Ly
vel vel fed: peds vel feadr
The set LY is a left ideal of HO. (For HOL® <« HVLY < Ly for every ve X,
hence HOLY « () LY = L") We prove that L{ is a minimal left ideal of # o,

vel

Let L; be a left ideal of H © guch that L, = L§” and let bea e Lj. Then a is contained
in a group, say a €G3, 0 € A;. A left ideal containing @ contains the whole group
G'3, hence e,4 € L;. Now (since e, is a right unit of L) LY = L{e,s < H 0y =
< Ly, whence L = L,. Since H©® is the union of its minimal left ideals, H®
is simple, which concludes the proof of our statement.

Denote by G the factor group S/Hj (i. e. the group of classes of the decomposition
S = Hyu HopaHg v ...). Denote further by ¢, the corresponding homomorphism
S - G. v

Let y be any homomorphism of S onto a group K with unit element e*. Then
H = y~(e*) is an almost normal subsemigroup of S, hence H o Hy. The group K
is isomorphic with the factor group G = S/H (i. e. the group of classes of the
decomposition S = Hu Ha'H v )

Since H is itself a completely simple semigroup (and H, an almost normal sub-

semigroup of H) we have
H = Hy,u Hya"Hy v Hep"Hp © .., a’,b",...e H,

and each class of G may be considered as a set theoretical union of some elements € G
(or better to say G are classes of an equivalence relation on G). Since both G and G
are groups, the class H (considered as a subset of G) is 2 normal subgroup of G.
There exists therefore a homomorphism § of G onto G. Now since @o: S > G
and $: G — G (and G ~ K) we have y = @o3. This means: Any homomorphism ¢
of S onto a group K is of the form y = @9, where 9 is a homomorphism of G onto K.

In this sense G may be considered as a maximal group homomorphic image-of S.

6. We have insisted B the use of the double cosests since they are directly the
congruence classes belonging to ¢. Of course the structure of the maximal group
homomorphic image (as iwell as of other group homomorphic images) can be
described in terms of coset decompositions of one group-component, say Gie»
with respect to a certain normal subgroup. .

Let H, be the minimal almost normal subsemigroup of S and denote Gy =
= Gy 0 Hy. Let .
S = Hy v HoaHy v HobHg © ... 2

+ Hereby we use the fact that for f§; == B, we have Lg N Lp, =}, and since hm_w ClLg,,
LY) € Ly, we have L n LY = ¢ for By =+ B,
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be the double coset decomposition of S modulo (Ho, H,). Without loss of gene-
rality suppose again that a, b, ... are elements € G, . The relation (2) implies

Gy, = Giy U G1aGyy v Gy 1bGYy U -

‘With respect to almost normality of H, we have G,aGy, = G11(G11a) = Gyya =
= aG}, . Consider the correspondence

HyaH, — GGy,

: F g pr (3)
HobHy — G 1bGY; -

Then (by Lemma 4) HoaH H,bH, = HyabH,—G},abGy, = (G1,0) (Gy;b). Since
the correspondence (3) is a one-to-ome, it follows that the group of classes of Gy,
with respect to the normal subgroup G, is isomorphic with the group G of double
classes as introduced above. Hence: The maximal group homomorphic image G is
isomorphic with the factor group GG, .
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IF'OMOMOP®M3MBI BIIOJHE IIPOCTOMH NOJIVIPYVIINIBI HA TPYINIITY
llregan WBapn
Pesrome

IIycre S — Boonse npocras nonyrpymna 6e3 myns. Kak mssectro (cm. [4], crIp. 263), S MOXHO

HanucaTth B BuAE O0penmHenus S = U U Gy, rae G, — m30MOpdHEIe MexIy coboit rpymnmst.
acAy feds
Toanmonyrpynry H nosyrpynus! S Ha30BeM HOYTH HOPMANBHOM, ecm a) H conepuT BCe HeMuo-
TenThI € S; 6) nepeceyenue Qwu = G, N H sBAsETCA HOPMATBHOK OOATPYIMION YPYIIEl Gpp XOTH G561 -
onst onHo# napkt a, f. (OrasbiBaercs, 4T0 B 3TOM ciIyuae Q\E — BOpMaJbHas noarpymma Gy Jts
BCAKOH napel y€ A,,0€ A4,).

B craree noxasssarotcs crenyrounme YTBEDKACHHUSA,

) 1. ITycts ¢ — romMomopdusm S Ha HEKOTOpYIO Ipymiy G € eAMHHYHBIM IEMEHTOM ¢, Tornma
noMHbI npoobpas exmHuist ¢ 1(e) = H— nourn HOpMaNbHAs IOANONYTPYIMA HONYTPYMIEL S.
Hns scsxoro a € G umeer mecrg ¢ 1(a) = HaH ¢ nooxopsummm 0o6pa3oM BrI6panusM g € S.
I'pymnna G m3omMopdna rpynme xmaccos B OHO3HAYHO ONPEACTICHHOM Pa3JIOKeHHH

MHM&CM\&N&CN@QC..Ln_w....m.w, *)

NpHHeM OPOU3BEACHHE K/IACCOB OMNPENEIIETCS €CTECTBEHHBIM 06pa3oM Kak IPOU3BEACHAC KOMILIEK-
coB B S. (3ameTHM, 4YTO 1Ba Knacca HaH u HbH win COBIAAAOT, WK HE NEPECEKAIOTCA, U MPOU3-
BEJICHiE ABYX KJIACCOB HEKOTODOH BeCh Kilace.) c

2. Hao6opot: Ecmu H — HCKOTOPOS NOYTH HOPMATILHASA MOMIOIIYT PYIa HOMYPyIIbI S, B ecnu
FIOCTpOMM passtoxenue (*), TO cymecrsyer Takol roMomopdusm @ HONYrpymisl § Ha HEKOTOPYIO
Tpynmy, mpy KOTOPOM KaXABUL KJAacC eCThb MOMHENL Mpoobpa3s OmHOTO 3jeMeHTa rpymsl @(S).

3. Ecnx H = Hy — MUBMMAaInHAs [DOYTH HOpMRJIbHAsA NOMNOJYIPYNNia HONYrpynmsl S, TO
COOTBETCTBYIOMAs IPYnna G SBISCTCH B €CTECTBEHHOM CMBICIIE MaKCHMAJTbHAIM TPYIIOBHIM 0Opa-
30m nonyrpymast S. asee, ans moGoit napsi (e, f) G o Gopl QM% , Toe Qmi = G N Hy.
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