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NOTE ON THE STOKES FORMULA
. FOR 2-DIMENSIONAL INTEGRALS IN n-SPACE

JOSEF KRAL, Praha, BELOSLAV RIECAN, Bratislava

In present note some theorems of the Stokes type -concerning curvilinear and
2-dimensional integrals in n-space are established.

1. Introduction. The term path (on <a, b)) is taken to mean a continuous
mapping f of {(aq, b) = {t;teE,a<t = b} into E,, the Euclidean #-space;
Jf will be termed closed provided J(@ = f(B). (For n = 2 we shall speak of a plane
path.) The length of f on {a, b) is defined as usual; we say that f is rectifiable if
its length is finite. Let S be a plane path on {a,b) and let ¢ = D, ..., 8],
¥ =1[¥,,.. ¥,] be continuous mappings of [f] = f((aq, b3) into E,. We put

aa
% LAY = 3 (1) d¥(s(1))
provided the Stieltjes integrals on the right-hand side exist, If K = e, By x <y, 8)
is a rectangle then f, will stand for the closed plane path describing simply the
boundary of X in positive sense, . ;

Let now &, ¥ be continuous mappings of X into E,. General conditions are
known: which, imposed on & and ¥, secure the existence of an integrable
function y on X with

. | s_.eaﬁn.m.e . 6}

(the integral on the right-hand side is taken in the sense of Lebesgue). The aim of
the present paper is, roughly speaking, to extend the validity of (1) to the case
where fy is replaced by a finite number of rectifiable closed plane paths with any
number of self-intersections.

If Gc E, is an open set and @, ¥ are mappings of G into E,, then

Y =rot(®, ¥)in G

means that (1) holds for every rectangle X < G.

Given a closed plane path f and a point z € E; — [f] we shall denote by ind (z, )
the index of z with respect to f. (The reader may consult T. Radé’s monograph [1],
II. 4. 34 and 1IV. 1. 24 for a precise definition.) Our main objective is to prove the
following theorem.
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1,1. Theorem. Let /!, - ™ be rectifiable closed plane paths and put ¢ = U M,
k=1

o(z) = Y ind (z; f% (zeE, - C), G={z Z€E; -~ C o2 + 0}, G =
k

P
=1
= {z;z¢ekE, - C, ©(z) = p}. Let D, ¥ be continuous mappings of C U G into E,
and suppose that ¥ is Lipschitzian on C U G and Y =rot (P, ¥) in G.

Then

0

uM dfr - [T @)

2l G, G-p

M:e&qu

k=1 s& =
provided the Lebesgue integrals ([ y (p + 0) exist.
Gp
L2. Remark. A sort of formula (2) still holds even if the Lebesgue integrals ._. fy
Gp

(r + 0) fail to exist (cf. theorem 11,1 below).
The right-hand side in (2) max be replaced by the series

8

Y o(ffr— ff 3)
r=1 G, G-p

unos.aon (3) is convergent (possibly, non-absolutely). In [2], p. 595, an example

is given showing that (3) ‘may actually diverge even in the relatively simple case

where 7 = 2 and ¥ is the identity map. If the integral

[y “

r%mosm to exist, then, in (2), we may write simply (4) instead of 2 I I
1=1 p>1
1,3. Remark. From 1,1 we obtain as a corollary a theorem of the Stokes type

for 2-dimensional Lipschitzian surfaces in E, bounded by a finite number of recti-

graph [3] for the réle of analogous theorems dealing with k-dimensional integrals,
An extensive bibliography concerning the Stokes formula together with correspon-
ding comments on the subject is given in K. Krickeberg's article [4].

_ 2. Before going into the proof of our main theorem we shall establish several
auxiliary results. Let us agree to accept the following notation, H, will stand for
the r-dimensional Hausdorff measure. Given 7 = [z15 .00y 204 4] €E, ., and a positive
integer ie(l,r + 1> we put #'= [z, 3 Zim 1524415 voy Zoyy]. For F e E ., put
F= {#;z¢ F}. For every x e E, denote by N(F, x) the number (possibly zero or
infinite) of points in {z;zeF, 5= x}.

2,1. Lemma, Let Fbe an analytic set inE, . . Then N(F, x) is Lebesgue measurable

Wwith respect to x on E, and .
H/F) 2 [ N(F, x) dx.
. E,
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Proof. Write F, for the set of all z = [z,, ...,Nl,,._mm, with k.27"< z, <
< (k + 1)27". Every F,, is analytic and, consequently, Fy is Lebesgue Bammﬁmc_o.
Clearly, bﬁﬁmht < H,(F,). Denoting by 1. the characteristic function of FonkE,
we obtain )" x.(x) A N(F, x) (n > o0) and

t:

k=~

JNF R dx =tim [( 3 gu0)dx=lim 5 H# <
Er

nsw E, k=—o n—ow k=—ow

M :B M .quNuawv = NN*AN.;V.
P k=—-u
3. Some background material. D will be used to denote the set of all infinitely
differentiable functions with compact support on E,, ;. Let A, be the system of all
Lebesgue measurable sets 4 = E ., with

+8V__k,=mu mcv.‘ QMMNV dz, @eD, max|g(z)| <1
L4 : i &
A

A measurable set 4 belongs to A, if and only if such a finite signed Borel measure PZ .

exists over the boundary 4 of 4 that

emcuvT%un%Wmh%.
Z; .
A

A
r+1
Il 41, is equal to the variation of P{ on 4 whenever 4 e A,. Further put A = mp A.

A is the system of all measurable 4 — E,+, for which the following is true: Such.

a vector-valued measure P4 = [P#, ... P4 1 exists over 4 that

r+1
fodPi(=% [v,dP{) = [ div o(z) dz
A i=1 4 A
. F
for every vector-valued function v = s, .., 0,44] With v, eD, 1 <i<r + 1.
d,\nmcm V' for the set ."&.. all v ={[vy,...,0,.4] with v, eD (1<i<r+ 1),

r+1 5 i .
10@)| = (), v¥(2))* < 1 on E,,,, we have for a measurable st 4 = E.,
i=1

+00 > |4} = sup [ divu(z) dz, ve V?,
v A .

if and only if 4eA.} 4] coincides with the total variation of the vector-valued
measure P on 4 whenever 4c A . A, and A are Boolean algebrae, :
A, includes all measurable sets 4 with JN(4, x) dx < + 0. In particular, every
E,

A < E,.y with H(4) < + o0 belongs to A and || 4] < H,(A).
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3,1. Remark. The systems A and A were, from different points of view, intro-
duced by E.De Giorgi and J. Matik. Their properties were studied by several
authors. Interested reader s referred to [5] for a bibliography on the subject.

4. Asetin E,, , which can be represented as a union of a finite number of compact
"+ C-&Eoum_.om& intervals which are allowed to have a void interior will be
called a figure. 4, A°, A and diam A will stand for the closure, the interior, the

boundary and the diameter of 4 (< E.4,) respectively. L will denote the Lebesgue
measure in E, , ;.

4,1. Lemma.* Let A S E.yy be a bounded set, 4°+ 0, H(A) < +. Then
there exists a sequence of figures 4, (k =1, 2, ...) such that sup H(4,) < + o0 and
: k

A Ay (k=1,2.), 4, =4°*
k

Proof. For every positive integer p there exists a sequence {K; }% . of open

{r + 1)-dimensional cubes such that 4 U
j=1

= e i 1
K;,, diam N:AWC =1,2,..)and
Mm:maﬁ K;, <1+ cH(A), , (5)
7

where ¢ > 0 is a constant independent of p. Rearranging the sequence {K;,}%.,,
if necessary, we can fix a J(p) such that

)
A= UK, AnK, +0  whenever Je L j(p)).
i=1

i iter)
Denote by p, the least pwith 4 — | K;, + 0 and put 4, = 4 — U K;,,. Clearly,
i=1 j=1

Ay c A°and A, is a figure. Suppose now that figures 4; < ... A, have already

’ o i®

been constructed. Denote by p+ 4 the least p for which K;, has a positive distance
=1

. J
J(Prc+ 1)

from A4, and put Ay =4- U K. ., Repeating this procedure infinitely
) i=1 . .
many times we arrive at a sequence of figures 4, 7 A° (k — o). Taking (5) into
account we see that H(d4,) < Y H(K e = 20r + 1) Y, diam’ K, <2r+1)x
. . k: J
x [1 + cH/(A)] for every k., Thus the proof is complete.

4,2, Lemma, Let A < E, 11 be a bounded set and suppose that there exist A, e A
k=1,2,..) such that A= 4, lim L(4 — 4,) = 0, limsup [ 4, | = ¢ < + 0.
k=00 “\ .

L LIETREIN

: k=00

* Cf..also {13), lemma 19, 26, p. 154,
** This will be expressed symbolically in the form Ay 7 A° (k- oo).
L4
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Then | A | < cand
M vdP* = lim | pdp4 6)
A

k—+ oo g
Jor every continuous (r + 1)-dimensional vector-valued function v on 4 *
Proof. We have for y e y!
fdivez)dz = lim [ divo(z) dz = Lim fvdP% <
A

koo 4; k= oo ;..n,
=< :M:m:w VA = e Consequently, 4] <e.
—~o ,

Noticing that

[ JodP* — [5dP1| < g, [JodPt% — [ Fdpa| < o

A . A Ay Axe

whenever v, v are continuous vector-valued funtions on 4 with max {v(z) — v(z) | < g,

. Zed
We see at once that it is sufficient to prove (6) for v = [p,, 05 Upyy] With v, €D

I<izgr+ 1) only. For such a v

JvdPt = { divo@z) dz = 1im J divoz) dz = 1im | vdpPAx,
A

A k—~ o0 Ay k- h.w

5. The scalar product of vectors u, e.mm.. will be denoted by u,v. Given M < E,
we shall denote by C( (M) the system of all continuous mappings of M into E,.
If M happens to be open, then C"(M) will stand for the system of all ¢ —
= [@,, ..., ?,] € CO%M) whose components @ (1 £ i < n) have continuous first
order partial derivatives in A7, We shall write simply C" instead of CUXE,) and

¢ will beused to denote the identity map of E, onto itself. Vg, b) is the system of all -

rectifiable plane paths on (q, b), Vi(a, b) is the subsystem ‘of al[ J € Ha, b) with
(@) = f(®) (i. e. of all clo sed paths in Vg, b)).

5,1. Lemma. Letf € V{(a, b), ¥ eCAlf), D e C(0), where O is some :&w\&e:iee&
of [f1in E,. Define the mapping X = [x1, 1] of [f] into E, by
L ..

0P op
R Skl b ‘ )

N» ”‘AW\O ¢\<

: Ox

13

Then y € CE([£1). and
fwde = ...N de.
I I

.* This assertion was communicated to us by prof. J. Mafik, compare also [13], lemma 19, 21,
pp. 150—151.

. O ; .
** We S:Holmﬂ = ﬁ@%n i v WLMQ for #(x,y) = @ = [®,...9,]; WMW: has a

similar meaning.

284

Proof. Letf = [f,, f,] and put ' = a + k(b — ay m-, =) k=0,..m;
m=1,2,..). It is easily seen that D(f) is rectifiable on {a, b) and

) = oeiz) = L2 [pimy pm
+ S ) — )+ D)~
Nsw_ — 0 as m > oo, Hence

where max |
k

.

%m&e = lim M.._U ¥(zi-1) o [(z) - Dz )] =

m—=o k=1

m=aw k=1

=tim 3 x(e) [ ()] = [

6. In section 3 we have recalled some basic properties of the systems A and A
of subsets in E,, , . Since no simplification could have been acquired by specialization
to r = 1, we described the general situation for any r 2 1. However, the special
case r = 1 is the only one we shall deal with in the sequel. Let us agree that, from
now on, the systems A, and A will be considered with respect to E), only. (Thus every
set of A, A to be met below is a subset in-E,.) Further denote by A the subsystem
of all A e A whose. boundary 4 is compact, .

6,1. Definition. Let A e A, d e V), p ¢ CO4).

~ We put

P(A4,2,9) = [ydP4
A

where y = [—y,, ¥,] and X1» X2 are defined by (7).
6,2. Lemma. Let fe Vo(a, b), A < E, and suppose that

{z; ind (z; /) = 1} =4, {z;ind (z;/) = 0} = E, - 4.

Then A€ A and

P4, D,¥) = [@dy
L J

whenever &, ¥, W&w“ lmmm c
ox’ dy

Proof. Since 4 < [f]and fis rectifiable, we have Nﬁ?& < +oo. Consequently,
A e A. Using Green’s formula Aon, [6]) and lemma 5,1 we obtain

. & . o~ Oy Jy
= 4 = - 2 SA )y = —
P(4, Gv‘m\v.l._,xav l.:,&ENI :A E mev ‘.NE .‘%a@.
i o %

S s
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Finally, integration by parts for Stieltjes integrals yields — fvdo = fody.
7 s

6,3. Remark. In 6,2, the assumption @u K Ye n,:v
dx’ gy’ "

to Ye C%), ¢ e CM. As lemma 6,2 shows, P(4, o, ¥) can

analogue of { @ dy, Indeed, if £ is a positively ori

could be generalized

be considered as an
ented rectifiable simple closed curve

s
bounding A, then these two quantities coincide with each other.
6,4. Lemma. Let A e A and Jo; D, Y& CV. Then
PA, D, %) = —P(4, ¥, &),

Proof. Since P(4,..)) = ~P(E, ~ 4,..), we may assume that 4 s bounded.
Let us recall that for ke C) and a solenoidal vector-valued function ve C{) the

formula
J hvdPt = Jfgradn v ®)
i A
is true (cf. [7], theorem 48, p. 554), Applying (8) to h = w_ » — [ _ we.. we@
i .V\ 3 x

i=1,.., n), we obtain

P(4,8,%) = T QAIE.@ 9¥; @V _
i=1 0x ’ )
A
In a similar way
P(4,¥,0) = T° : 9% ov. oo, oy,
. Fe ox * dy ox J°
A
whence our lemma follows at once.,

7. Given a M < E, and a mapping @ of M into E, we put for any N M
12y =sup|a@)).

zeN

énmmw%mae_.m H..nmmd#&m:oa?é:: constant A provided | D) - d(v)| <
= 2{u — v| whenever u, veN. : B

7:1. Definition. Let 4 e &, ¥ ¢ CO(4). We define
(A, ) = sup P(4, ¢, ¥),
'3

 ranging-over the class. of all 2.€.CV with | ¢ | B S1

7,2. Lemma. Let Ac A, ¢ — (¥, ..., Ble € gng .Ege% that

| 0¥ (z) 0¥ (z)
‘ ox dy

IIA

< (i M,H.‘H..:.zv

Tq
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.

»

whenever z € A. Then, for every ¢ e CV,

[PA.P. V)| A28, 04]. &)
In particular,
@ (4, ¥) S22 4] (10)
Proof. Writing » Hﬁleo ol , Po mﬁg we obtain by 6,4 and 6,1

. dy Ox
_wi,%,w\:”_:}ﬁev_H_....c&i_M lolli-N4].
A

Clearly, v |4 < 2 /2 [ & | ;.

7,3. Lemma. Let h be a function which is Lipschitzian on E, with constant 1. Then
there exists a sequence of functions hee €V (k= 1,2, ...) such that by = h uniformly
onE, as k - o and

ok,

Ox %

A

Proof. This lemma is well known.

7,4.- Proposition. Let A € A and let ¥ be a mapping of A into E,, which is Lipschitzian
on A4 with constant ). Then (10) is valid.

Proof. We may assume that ¥ — [¥,,..., ¥,], where Y(A=Lignare Lipschitz-
ian on E, with constant (cf. [8], lemma 1, p- 341). According to 7,2 we have a
sequence ¥ie C{V (k = 1,2, ...) such that ¥i—> ¥, (k> o) uniformly on E, and

k k|
o wﬁ | <2 Put ¥ = (W5, WY Clearly, yhe €Y and, in view
ox 19y _
of 1.2, IP(A4, 2, ) | S 2 /2 & |l;. 1| 4 Il for an arbitrary & & C. Making k — oo

=4

we obtain (9) (cf. the definition 6,1). Hence (10) easily follows.

8,1. Lemma. Let A €A and suppose that ¥ e CN4), «(4, P) < oo. Then, for
every e C1,
[ P(4, D, %) | < [ & );. a4, P).

Proof. Givene > 0and ® € C'" we can fixa & e C{M such that || & le,Se+ (@],
and & = & in some neighbourhood of 4 (cf.lemma 5 in [7]). According to the
definition 7,1 we have |P(4, &, ) =1P4,d 9)| <& le, - (4, ¥) <
SE+D1). a4, ¥). Since ¢ was an arbitrary positive number, the proof is
complete, .

82 Remark. Let de A, ¥e CO4), (4, ¥) < +o0. Fix ®e CO(4) and
suppose that ‘e CV (k = 1,2, ...),

lim || ¢ — ¢*|; = 0. 11)

k=0
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It follows easily from 8,1 that the limit lim P(A, &%, V) exists and is independent
k-

-of the choice of the sequence {912, fulfilling (11). We are thus justified to introduce
the following definition:

8,3. Definition. Let 4 € 4, ¥ € C(2), (4, ¥) < +oo. For any & e CO(4) put

P(4, 9, %) = lim P(4, ", ),
ko0

where {@*}2, is a sequence of mappings in C{V fulfilling (11).

9. The symbols f*, ..., f™.C, o, G,, G will have the same inmE.um as in the
theorem 1,1. Further put U, = {z:2€E, — C, 0(z) 2 1.

9,1. Lemma.

-] L

21U < +oo, Y 1G, | < +c. (12)

I=-w =—-w
In particular, U, »» Gp € A for every integer p and, by proposition 74,
O w

I=—w P=-o

for every Lipschitzian mapping ¥ of C into E,.
Proof. Since ) || U, =X N(U,, p) dy, G, hL.=X N(G,,p)dy, it
[ )

I E; p E,
is sufficient to prove that the functions

INU.,  ING (=12

-are integrable (with respect to the variable y) on E,. Clearly, we may consider the

‘case i = 2 only. Let us keep the notation introduced in [2], section 15, pp. 589 —591,
From investigations desgrjbed there we obtain for every YeE, — M

ZNAQE .EM MUM_ .@AQ: :gv_. M M _o.eﬁm\t :...v_ M%@v
gu

i j=1

Noticing that M has measure zero and ¥ is integrable on E; we see that integrability
of " Ny(U,, ) is checked. Similarly, investigations described in 2L, p. 592, imply
i

‘the inequality . .
NG, NS N0)  (vek - M)
p

showing that ) ZNAAW, ) is integrable on E,.
14
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Y oU,¥)<+w, 3 oG, )<+ (13)

\W.N. Theorem. Let ¢ ¢ COC) and let ¥ be a Lipschitzian mapping of Cinto E
Then "

wM» .\._“a& d¥ = ~M— ABW~ ﬁm.AQu. D, W\v - NUAQIE P, ﬂ\v“: QAV

Proof. We shall first prove

m

L [24¥ = 3 [P0, 9,9) + Hu,_, 0, a9

k=1 sk

wﬁN\T @u 5 +.$AQM17 e. W\v = M EUAQE. @u W\v == Nvﬁthu eu gu. Ammv
p2l
whence (14) follows at once. In view of (13) we may assume that P e CD(cf. also 8,2).
Define y = [y,, X21 by (7). We obtain from 5,1

»Mn \....«G d¥ = -y fxde (18)

k=1 fk

anw_.um&o:ogmo: Eﬁomzooa_.n [2], section 17, we derive from theorem 15 and
remark 17 in [2) .

m ' w ) -
L, Jxdi = T [P(U, 1) + PyU,_, ), as*)
In a similar way we obtain from investigations on P- 592 in [2]
Po(Ui, 1) + Po(U, _,, y) = 2. [Po(G,, 1) — Py(G_,, n). (16"*)
p=l

Comparing the definition 6,1 of the present note with the remark 17 in 2] we see
that

.NUOAQ: Nv = - .‘.M&VQ~ = INvAN\T eu @\vu

U,
Py(G,, x) = -PG,, o, V).
Thus (15°%), (16**) and (18) imply (15), (16).
10,1. Lemma. Let 4 — E, be a bounded set, Ay < A (k = L2, .. )and suppose that
lim L4 — 4,) = 0, limsup || 4, | < + oo,

k~ oo k=

Let ¥ be g Lipschitzian mapping of A into E,.
Then

(4, ¥) < + oo, limsup a(4, Y) < +0 (19

k— o

and, \S. every & e CLO)(4),

Lim P(4,, 9, ¥) = P(4, &, w), | ©0)

k—~ o
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Proof. By lemma 4,2, (20) is true for any @ e € (cf. 6,1). In view of 7,4 we
obtain GMV. Hence it folows easily that (20) can be extended, by continuity, to any
@ e CLO4).

10,2. Detinition. Let 4 < E, be a bounded set, L(4) = 0. Let y be a function
defined almost everywhere on A4 such that the Lebesgue integral ([ y is available
. X
for every rectangle X = 4° (Consequently, [y exists for every two-dimensional
B

mmE.m B <= A4° as well.) If
lim ffy ; Q1

k—w Ay «

exists for every sequence of figures 4, 7 A° (k > o) with

sup H,(4,) < + oo, 22
k

then the limit (21) is independent of the choice of figures 4, — 4° fulfilling (22) and
its value will be denoted by L(4, y). .

10,3. Remark. Of course, L(4, 7) = [y whenever happens to be Lebesgue
A

integrable on A4, so that L(4, y) may be considered as an extension of the Lebesgue
integral. For more general study of analogous extensions the reader may consult [9].

The articles [10], [11] reviewed in Ref. Jour. 1959 which seem to deal with similar
problems were not available to us,

10,4. Proposition. Let A < E, be a bounded set, Hi(4) < +o0. Let & e CO(4)

and suppose that V¥ is a Lipschitzian mapping of 4 into E,.
If y = rot (®, ¥) in A°, then

P(4, ¢, ¥) = L(4, y).
This proposition follows easily from 10,1 and 10,2,
11. As an easy consequence of 9,2 and 10,4 we obtain the following theorem.

11,1. Theorem. Let us keep all the assumptions and notation of the theorem 1,1. Then
2 [2d¥ = ¥ {Y [L(G,.7) — L(G_,, )]} 23)
k=1 fk =1 p>1
11,2. Remark. Theorem 1,1 is merely a corollary of 11,1.
11,3. Remark. The right hand side in (23) may be replaced by 2. pll(G,,y) -
p=1

= L(G_,, y)] if this series happens to converge.

11,4. Remark. Let ¥ = [y, .., ¥,] be a Lipschitzian mapping of G into E,
andlet I' = [I'y,...,I] be a Lipschitzian mapping of V = ¥(G) into E,. Suppose

290

that M < V, L¥Y~Y(M) = 0 and that 2. u®) (, ~ u) is the differential of I'* with
k=1

respect to V at any u® = [u?, . u%e ¥V — M. Put D(2) = I'(¥(2)),

]

0¥{z) 0¥(2)

)= % ) - .| O
! 2)  0¥(2)
ox 7 dy

as far as the symbols involved are meaningful. Then y = rot (@, %) in G.
This follows at once from theorem 12 in [12]. .
This assertion can be combined with 11,1.
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3AMETKA K TEOPEME CTOKECA ANA ABYMEPHBIX UHTETPAJIOB
B n-MEPHOM IIPOCTPAHCTBE

Hoced Kpan, Benocnan Puevan

BriBoast

[

Ecnu f— nenpepsisroe orobpaxeHnue orpeska {a, b B nnockocts E,, To cumBonom wa, b, f)
obo3HauM naHHY NYTH f, onpenenentyio OB BIKHOBEHHBIM ofpazom. Eciu Wa, b, f) < + oo, T0 MBI
Syaem rosopuTs, yro Se Va, b). Toacucremy Beex f€ Via, b) YROBJIETBOPAIOIEX YCIORMIO fla) =
= f(b), oBosuawum camponon Vola, b). Ecnu fe Va, ) und = [o, | s V=, e ¥l —
HEMNPEPLBHBIE 0TOGPaKCHUS MHOXeCTBa fKa, b)s fIpocTpancTeo E, , To nonaraem o ONpee/IeHHIO

i=la
Crunb Theca. Criosom »HHTEPBAT" Mol Gynem nonpasymMeBaTh ABYMepHbIit KOMIAKTHEI HHTEpBaJL,
Eciu K — wwrepsan, To 060o3HavaM f oTobpaxeHue u3 Vo(a, b), xoropoe pacr HapaMeTpuyeckoe

n b
[odP =3 .\ D fi ) awy( \Qt B DPCANONCHUM, YTO CYIIECTBYIOT COOTBETCTBYIOMME UHTErPa Ll
S

€TBO, KOTOPOE SBISETCH COCMHHECHHEM KOHEYHOro YHCIIa HHTEpBANoB 6ymem Ha3elBaTh QuUrypoir
CumBonoM H;, L 0603nayum JHHEHRYIO Mepy Xaycnopga u ABYMCpHYIo Mepy JleGera cooTpet-
creenHo. IMycte 4 — orpanmyennoe MHOXCCTRO B E,, A— €ro rpaumnua, A° = 4 — 4. IIycre,
JBanee, hg.v = 0 u nycrs ¥ l%ﬁxg. OlIpenesieHHas MOYTH BCIONY HA A u HHTErpapyeMasi Ha
kaxnoM uurepsaite K C 4°. Ecma mns KaX7I0ii nocneroBaTebHOCTH duryp F.CcA°, YROBIETBODSIIO-

ine#t TpeGoBanuio sup H(F) < oo CyulecTByeT npegen lim \ ,\ ¥, TO 3TOT mpeAen me 3aBUCHT OT
k—o0 Fy

noctenosatentiocT {F}Po) ¥ Mul ero 0603Haum yepes L(4,y); pasymeercs L4, 9= s S y
A
€CIIH Y MHTETpUpyeMas Ha A,

m
Teopema. Ilycts fie Vy(a,, b)) A=srfxm), C=UfiKa,,s, ). Hnst z€ Ey — C nonowxum
j2 0; et j> 9f 2
=

m
w(z) = X ind(z, ), roe ind-¢af /) 0603uavaer HNOPANOK TOYKH Z OTHOCHTEILHO nyru fJ, Tycrs
§= F - o

J

G,={z ze E;—C, a(z) = p}, G= Con ¥ mycts Ha C U G onpenenens: HETPEPBIBHEIE 0TOGPa-
A

xenus @, ¥ B npocrpancteo E,, npwiem ¥ YAOBNETBOPSET ycnormo JIummmma, Ecmy ¥ = rot

@, ¥)na G, rorna CYLUECTBYIOT HeCOBCTBEH HEIE HHTerpasl L( Qu. P)(p + 0) u umeer MecTo dop-

Myna

m w0
M ._.@Qw\” M AM —”PAQHuﬁvl FAQIE‘EHW i A*v
j=1f1 1=1 p>t
« Lo}

Ilparyio uacts pasencraa (*) MoxHO 3amennTs Ha X EPAQE ) — LG_ ps V)] coots. na of [ wy,
. r=1 G

€CIY MOCNEAHHEe CHMBOMBI MMEIOT CMbICH,
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