FOR 2-DIMENSIONAL INTEGRALS IN n-SPACE NOTE ON THE STOKES FORMULA

JOSEF KRÁL, Praha, BELOSLAV RIEČAN, Bratislava

2-dimensional integrals in n-space are established In present note some theorems of the Stokes type concerning curvilinear and

 $\Psi = [\Psi_1, ..., \Psi_n]$ be continuous mappings of $[f] = f(\langle a, b \rangle)$ into E_n . We put path.) The length of f on $\langle a, b \rangle$ is defined as usual; we say that f is rectifiable if its length is finite. Let f be a plane path on $\langle a,b\rangle$ and let $\Phi=[\Phi_1,...,\Phi_n]$, f will be termed closed provided f(a) = f(b). (For n = 2 we shall speak of a plane mapping f of $\langle a,b\rangle=\{t;t\in E_1,a\leq t\leq b\}$ into E_n , the Euclidean n-space; 1. Introduction. The term path (on $\langle a,b\rangle$) is taken to mean a continuous

$$\int_{f} \Phi \, \mathrm{d} \Psi = \sum_{i=1}^{n} \int_{a}^{b} \Phi_{i}(f(t)) \, \mathrm{d} \Psi_{i}(f(t))$$

is a rectangle then f_K will stand for the closed plane path describing simply the provided the Stieltjes integrals on the right-hand side exist. If $K = \langle \alpha, \beta \rangle \times \langle \gamma, \delta \rangle$ boundary of K in positive sense.

function y on K with known which, imposed on Φ and Ψ , secure the existence of an integrable Let now Φ , Ψ be continuous mappings of K into E_n . General conditions are

$$\int_{K} \Phi \, \mathrm{d} \Psi = \iint_{K} \gamma \tag{1}$$

where f_K is replaced by a finite number of rectifiable closed plane paths with any number of self-intersections. the present paper is, roughly speaking, to extend the validity of (1) to the case (the integral on the right-hand side is taken in the sense of Lebesgue). The aim of

If $G \subset E_2$ is an open set and Φ , Ψ are mappings of G into E_n , then

$$\gamma = \operatorname{rot}(\Phi, \Psi) \operatorname{in} G$$

the index of z with respect to f. (The reader may consult T. Radó's monograph [1], Given a closed plane path f and a point $z \in E_2 - [f]$ we shall denote by ind (z, f)

means that (1) holds for every rectangle $K \subset G$.

II. 4. 34 and IV. 1. 24 for a precise definition.) Our main objective is to prove the following theorem.

> = $\{z; z \in E_2 - C, \omega(z) = p\}$. Let Φ , Ψ be continuous mappings of $C \cup G$ into E_n and suppose that Ψ is Lipschitzian on $C \cup G$ and $\gamma = \text{rot}(\Phi, \Psi)$ in G. $\omega(z) = \sum_{k=1}^{\infty} \text{ ind } (z; f^k) \quad (z \in E_2 - C), \quad G = \{z; z \in E_2 - C, \omega(z) \neq 0\}, \quad G_p = C$ 1,1. Theorem. Let $f^1, ..., f^m$ be rectifiable closed plane paths and put $C = \bigcup_{k=1}^m [f^k]$,

$$\sum_{k=1}^{m} \int_{f^k} \Phi \, \mathrm{d} \Psi = \sum_{l=1}^{\infty} \left[\sum_{\rho \ge l} \left(\iint_{G_p} \gamma - \iint_{G_{-p}} \gamma \right) \right] \tag{2}$$

provided the Lebesgue integrals $\iint \gamma$ $(p \pm 0)$ exist.

1,2. Remark. A sort of formula (2) still holds even if the Lebesgue integrals $\iint \gamma$ $(p \pm 0)$ fail to exist (cf. theorem 11,1 below).

The right-hand side in (2) max be replaced by the series

$$\sum_{p=1}^{\infty} P(\iint \gamma - \iint \gamma)$$

$$G_{-p}$$
(3)

where n = 2 and Ψ is the identity map. If the integral is given showing that (3) may actually diverge even in the relatively simple case provided (3) is convergent (possibly, non-absolutely). In [2], p. 595, an example

$$\int_{\mathcal{C}} \int \omega \gamma$$
 (4)

happens to exist, then, in (2), we may write simply (4) instead of $\sum_{l=1}^{\infty} [\sum_{p \geq l} (...)]$.

ding comments on the subject is given in K. Krickeberg's article [4]. graph [3] for the rôle of analogous theorems dealing with k-dimensional integrals. fiable curves (cf. remark 11,4 below). The reader may consult H. Whitney's mono-An extensive bibliography concerning the Stokes formula together with corresponfor 2-dimensional Lipschitzian surfaces in E_n bounded by a finite number of recti-1,3. Remark. From 1,1 we obtain as a corollary a theorem of the Stokes type

 $\hat{F}^i = \{\hat{z}^i; z \in F\}$. For every $x \in E$, denote by $N_i(F, x)$ the number (possibly zero or integer $i \in \langle 1, r+1 \rangle$ we put $\hat{z}^i = [z_1, ..., z_{i-1}, z_{i+1}, ..., z_{r+1}]$. For $F \subset E_{r+1}$ put auxiliary results. Let us agree to accept the following notation. H, will stand for infinite) of points in $\{z; z \in F, \hat{z}^i = x\}$. the r-dimensional Hausdorff measure. Given $z = [z_1, ..., z_{r+1}] \in E_{r+1}$ and a positive 2. Before going into the proof of our main theorem we shall establish several

with respect to x on E, and **2,1.** Lemma. Let F be an analytic set in E_{r+1} . Then $N_i(F, x)$ is Lebesgue measurable

$$H_r(F) \ge \int_{E_r} N_i(F, x) dx.$$

Proof. Write F_{nk} for the set of all $z = [z_1, ..., z_{r+1}] \in \hat{F}$ with $k \cdot 2^{-n} \le z_i < (k+1) \cdot 2^{-n}$. Every F_{nk} is analytic and, consequently, \hat{F}_{nk}^i is Lebesgue measurable. Clearly, $H_r(\hat{F}_{nk}^i) \le H_r(F_{nk})$. Denoting by χ_{nk} the characteristic function of \hat{F}_{nk}^i on E_r we obtain $\sum_{k=-\infty}^{\infty} \chi_{nk}(x) \nearrow N_i(F, x) \ (n \to \infty)$ and

$$\int_{E_r} N_i(F, x) \, \mathrm{d}x = \lim_{n \to \infty} \int_{E_r} \left(\sum_{k = -\infty}^{\infty} \chi_{nk}(x) \right) \mathrm{d}x = \lim_{n \to \infty} \sum_{k = -\infty}^{\infty} H_r(\hat{F}_{nk}^i) \le$$

$$\leq \lim_{n \to \infty} \sum_{k = -\infty}^{\infty} H_r(F_{nk}) = H_r(F).$$

3. Some background material. D will be used to denote the set of all infinitely differentiable functions with compact support on E_{r+1} . Let A_r be the system of all Lebesgue measurable sets $A \subset E_{r+1}$ with

$$+\infty > \|A\|_i = \sup_{\varphi} \int_A \frac{\partial \varphi(z)}{\partial z_i} dz, \qquad \varphi \in \mathcal{D}, \qquad \max_z |\varphi(z)| \le 1.$$

A measurable set A belongs to A, if and only if such a finite signed Borel measure P_i^A exists over the boundary A of A that

$$\varphi \in \mathbf{D} \Rightarrow \int_{A} \varphi \, d\mathbf{P}_{i}^{A} = \int_{A} \frac{\partial \varphi(z)}{\partial z_{i}} \, dz.$$

 $||A||_i$ is equal to the variation of P_i^A on A whenever $A \in A_i$. Further put $A = \bigcap_{i=1}^{r+1} A_i$.

A is the system of all measurable $A \subset E_{r+1}$ for which the following is true: Such a vector-valued measure $P^A = [P_1^A, ..., P_{r+1}^A]$ exists over A that

$$\int_{\mathbf{A}} v \, d\mathbf{P}^{\mathbf{A}} \left(= \sum_{i=1}^{r+1} \int_{\mathbf{A}} v_i \, d\mathbf{P}_i^{\mathbf{A}} \right) = \int_{\mathbf{A}} \operatorname{div} v(z) \, dz$$

for every vector-valued function $v = [v_1, ..., v_{r+1}]$ with $v_i \in \mathbf{D}$, $1 \le i \le r+1$. Writing \mathbf{V}^1 for the set of all $v = [v_1, ..., v_{r+1}]$ with $v_i \in \mathbf{D}$ $(1 \le i \le r+1)$, $|v(z)| = (\sum_{i=1}^r v_i^2(z))^{\frac{1}{2}} \le 1$ on E_{r+1} , we have for a measurable set $A \subset E_{r+1}$

$$+\infty > ||A|| = \sup_{v} \int \operatorname{div} v(z) \, dz, \ v \in V^1,$$

if and only if $A \in A$. ||A|| coincides with the total variation of the vector-valued measure P^A on A whenever $A \in A$. A, and A are Boolean algebras.

 A_r includes all measurable sets A with $\int_{E_r} N_r(A, x) dx < +\infty$. In particular, every $A \subset E_{r+1}$ with $H_r(A) < +\infty$ belongs to A and $||A|| \le H_r(A)$.

- 3,1. Remark. The systems A and A, were, from different points of view, introduced by E. De Giorgi and J. Mařík. Their properties were studied by several authors. Interested reader is referred to [5] for a bibliography on the subject.
- 4. A set in E_{r+1} which can be represented as a union of a finite number of compact (r+1)-dimensional intervals which are allowed to have a void interior will be called a figure. \overline{A} , A° , \overline{A} and diam A will stand for the closure, the interior, the boundary and the diameter of A ($\subset E_{r+1}$) respectively. L will denote the Lebesgue measure in E_{r+1} .
- **4,1.** Lemma.* Let $A \subset E_{r+1}$ be a bounded set, $A^{\circ} \neq 0$, $H_r(A) < +\infty$. Then there exists a sequence of figures A_k (k = 1, 2, ...) such that $\sup_k H_r(A_k) < +\infty$ and

$$A_k \subset A_{k+1}$$
 $(k = 1, 2, ...), \bigcup_k A_k = A^{\circ} **$

Proof. For every positive integer p there exists a sequence $\{K_{jp}\}_{j=1}^{\infty}$ of open (r+1)-dimensional cubes such that $A \subset \bigcup_{j=1}^{\infty} K_{jp}$, diam $K_{jp} < \frac{1}{p} (j=1,2,...)$ and

$$\sum_{j} \operatorname{diam'} K_{jp} < 1 + cH_{r}(A), \tag{5}$$

where c>0 is a constant independent of p. Rearranging the sequence $\{K_{jp}\}_{j=1}^{\infty}$, if necessary, we can fix a j(p) such that

$$A \subset \bigcup_{j=1}^{N(P)} K_{jp}, \quad A \cap K_{jp} \neq 0 \quad \text{whenever} \quad j \in \langle 1, j(p) \rangle.$$

Denote by p_1 the least p with $A - \bigcup_{j=1}^{f(p)} K_{jp} + \emptyset$ and put $A_1 = A - \bigcup_{j=1}^{f(p_1)} K_{jp_1}$. Clearly, $A_1 \subset A^\circ$ and A_1 is a figure. Suppose now that figures $A_1 \subset ... \subset A_k$ have already been constructed. Denote by p_{k+1} the least p for which $\bigcup_{j \in I} K_{jp}$ has a positive distance from A_k and put $A_{k+1} = A - \bigcup_{j=1}^{f(p_{k+1})} K_{jp_{k+1}}$. Repeating this procedure infinitely many times we arrive at a sequence of figures $A_k \nearrow A^\circ$ $(k \to \infty)$. Taking (5) into account we see that $H_r(A_k) \leq \sum_k H_r(K_{jp_k}) \leq 2(r+1) \sum_j \text{diam'} K_{jp_k} < 2(r+1) \times [1+cH_r(A_j)]$ for every k. Thus the proof is complete.

- **4,2. Lemma.** Let $A \subset E_{r+1}$ be a bounded set and suppose that there exist $A_k \in A$ (k = 1, 2, ...) such that $A_k \subset A$, $\lim_{k \to \infty} L(A A_k) = 0$, $\limsup_{k \to \infty} ||A_k|| = c < +\infty$.
- * Cf. also [13], lemma 19, 26, p. 154.
- ** This will be expressed symbolically in the form $A_k \nearrow A^\circ \ (k \to \infty)$.

9

for every continuous (r + 1)-dimensional vector-valued function v on $ar{A}.^*$

$$\int_{A} \operatorname{div} v(z) \, dz = \lim_{k \to \infty} \int_{A_k} \operatorname{div} v(z) \, dz = \lim_{k \to \infty} \int_{A_k} v \, dP^{A_k} \le \lim_{k \to \infty} \lim_{A_k} ||A_k|| - 2 C_{\text{constant}}$$

 $\leq \limsup_{k\to\infty} ||A_k|| = c$. Consequently, $||A|| \leq c$.

$$|\int_{A} v \, d\mathbf{P}^{A} - \int_{A} \tilde{v} \, d\mathbf{P}^{A}| \leq \varepsilon c, \quad |\int_{A} v \, d\mathbf{P}^{A_{k}} - \int_{A} \tilde{v} \, d\mathbf{P}^{A_{k}}| \leq \varepsilon c$$

whenever v, \tilde{v} are continuous vector-valued funtions on \bar{A} with max $|v(z) - \tilde{v}(z)| \leq \varepsilon$,

we see at once that it is sufficient to prove (6) for $v = [v_1, ..., v_{r+1}]$ with $v_i \in \mathbf{D}$

$$\int_{A} v \, d\mathbf{P}^{A} = \int_{A} \operatorname{div} v(z) \, dz = \lim_{k \to \infty} \int_{A_{k}} \operatorname{div} v(z) \, dz = \lim_{k \to \infty} \int_{A_{k}} v \, d\mathbf{P}^{A_{k}}.$$

 ι will beused to denote the identity map of E_2 onto itself. V(a,b) is the system of all 5. The scalar product of vectors $u, v \in E_n$ will be denoted by $u \circ v$. Given $M \subset E_2$ we shall denote by $C_n^{(0)}(M)$ the system of all continuous mappings of M into E_n . (a) = f(b) (i. e. of all clo sed paths in V(a, b)). rectifiable plane paths on $\langle a, b \rangle$, $V_0(a, b)$ is the subsystem of all $f \in V(a, b)$ with order partial derivatives in M. We shall write simply $C_n^{(1)}$ instead of $C_n^{(1)}(E_2)$ and = $[\phi_1, ..., \phi_n] \in C_n^{(0)}(M)$ whose components ϕ_i ($1 \le i \le n$) have continuous first If M happens to be open, then $C_n^{(1)}(M)$ will stand for the system of all $\phi =$

5,1. Lemma. Let $f \in V(a, b)$, $\Psi \in C_n^0([f])$, $\Phi \in C_n^{(1)}(O)$, where O is some neighbourhood of [f] in E_2 . Define the mapping $\chi = [\chi_1, \chi_2]$ of [f] into E_2 by

$$\chi_1 = \Psi \circ \frac{\partial \phi}{\partial x}, \qquad \chi_2 = \Psi \circ \frac{\partial \phi}{\partial y} **$$
 (7)

Then $\chi \in C_2^{(0)}([f])$ and

$$\int_{f} \Psi \, d\Phi = \int_{f} \chi \, d\iota.$$

* This assertion was communicated to us by prof. J. Mařík, compare also [13], lemma 19, 21,

** We write
$$\frac{\partial \Phi}{\partial x} = \begin{bmatrix} \frac{\partial \Phi_1}{\partial x}, & \frac{\partial \Phi_n}{\partial x} \end{bmatrix}$$
 for $\Phi(x, y) = \Phi = [\Phi_1, ..., \Phi_n]; \frac{\partial \Phi}{\partial y}$ has a similar meaning.

Proof. Let $f = [f_1, f_2]$ and put $t_k^m = a + k(b-a)m^{-1}$, $z_k^m = f(t_k^m)$ (k = 0, ..., m; m = 1, 2, ...). It is easily seen that $\Phi(f)$ is rectifiable on $\langle a, b \rangle$ and

$$\begin{split} \Phi(z_{k}^{m}) - \Phi(z_{k-1}^{m}) &= \frac{\partial (\Phi z_{k-1}^{m})}{\partial x} \left[f_{1}(t_{k}^{m}) - f_{1}(t_{k-1}^{m}) \right] + \\ &+ \frac{\partial \Phi(z_{k-1}^{m})}{\partial y} \left[f_{2}(t_{k}^{m}) - f_{2}(t_{k-1}^{m}) \right] + \left[f(t_{k}^{m}) - f(t_{k-1}^{m}) \right] \cdot \stackrel{\leftarrow}{o}_{mk}, \end{split}$$

where $\max_{k} |\overrightarrow{o}_{mk}| \to 0$ as $m \to \infty$. Hence

$$\int_{f} \Psi \, \mathrm{d}\Phi = \lim_{m \to \infty} \sum_{k=1}^{m} \Psi(z_{k-1}^{m})_{\circ} \left[\Phi(z_{k}^{m}) - \Phi(z_{k-1}^{m})\right] =$$

$$= \lim_{m \to \infty} \sum_{k=1}^{m} \chi(z_{k-1}^{m})_{\circ} \left[\iota(z_{k}^{m}) - \iota(z_{k-1}^{m})\right] = \int_{f} \chi \, \mathrm{d}\iota.$$

set of A_i , A to be met below is a subset in E_2 .) Further denote by \tilde{A} the subsystem of all $A \in A$ whose, boundary \dot{A} is compact. now on, the systems A_i and A will be considered with respect to E_2 only. (Thus every case r = 1 is the only one we shall deal with in the sequel. Let us agree that, from to r=1, we described the general situation for any $r \ge 1$. However, the special of subsets in E_{r+1} . Since no simplification could have been acquired by specialization 6. In section 3 we have recalled some basic properties of the systems A_i and A

6.1. Definition. Let $A \in \tilde{A}$, $\phi \in C_n^{(1)}$, $\Psi \in C_n^{(0)}(A)$.

$$P(A, \Phi, \Psi) = \int \tilde{\chi} d\mathbf{P}^A$$

where $\tilde{\chi} = [-\chi_2, \chi_1]$ and χ_1, χ_2 are defined by (7).

6,2. Lemma. Let $f \in V_0(a,b)$, $A \subset E_2$ and suppose that

$$\{z; \text{ ind } (z;f) = 1\} = A, \{z; \text{ ind } (z;f) = 0\} = E_2 - \overline{A}.$$

$$P(A, \, \Phi, \, \Psi) = \int\limits_{f} \, \Phi \, \mathrm{d} \Psi$$

whenever Φ , Ψ , $\frac{\partial \Phi}{\partial x}$, $\frac{\partial \Phi}{\partial y} \in C_n^{(1)}$.

Proof. Since $A \subset [f]$ and f is rectifiable, we have $H_1(A) < +\infty$. Consequently, $A \in A$. Using Green's formula (cf. [6]) and lemma 5,1 we obtain

$$P(A, \Phi, \Psi) = \int_{A} \tilde{\chi} \, dP^{A} = \iint_{A} \operatorname{div} \tilde{\chi} = -\iint_{A} \left(\frac{\partial \chi_{2}}{\partial x} - \frac{\partial \chi_{1}}{\partial y} \right) = -\int_{A} \chi \, d\iota = -\int_{A} \Psi \, d\Phi.$$

Finally, integration by parts for Stieltjes integrals yields $-\int_{1}^{\infty} \Psi d\Phi = \int_{1}^{\infty} \Phi d\Psi$.

6,3. Remark. In 6,2, the assumption $\frac{\partial \Phi}{\partial x}$, $\frac{\partial \Phi}{\partial y}$, $\Psi \in C_n^{(1)}$ could be generalized to $\Psi \in C_n^{(0)}(A)$, $\Phi \in C_n^{(1)}$. As lemma 6,2 shows, $P(A, \Phi, \Psi)$ can be considered as an analogue of $\int \Phi d\Psi$. Indeed, if f is a positively oriented rectifiable simple closed curve bounding A, then these two quantities coincide with each other.

6,4. Lemma. Let $A \in \tilde{A}$ and let Φ , $\Psi \in C_n^{(1)}$. Then

$$P(A, \Phi, \Psi) = -P(A, \Psi, \Phi).$$

Proof. Since $P(A,...) = -P(E_2 - A,...)$, we may assume that A is bounded. Let us recall that for $h \in \mathbf{C}_1^{(1)}$ and a solenoidal vector-valued function $v \in \mathbf{C}_2^{(1)}$ the

$$\int_{A} h v \, dP^{A} = \iint_{A} \operatorname{grad} h \circ v \tag{3}$$

is true (cf. [7], theorem 48, p. 554). Applying (8) to $h = \Psi_i$, $v = \left[-\frac{\partial \Phi_i}{\partial y}, \frac{\partial \Phi_i}{\partial x} \right]$ (i = 1, ..., n), we obtain

$$P(A, \Phi, \Psi) = \sum_{i=1}^{n} \iint \left(-\frac{\partial \Psi_i}{\partial x} \cdot \frac{\partial \Phi_i}{\partial y} + \frac{\partial \Psi_i}{\partial y} \cdot \frac{\partial \Phi_i}{\partial x} \right).$$

In a similar way

$$P(A, \Psi, \Phi) = \sum_{i=1}^{n} \iiint \left(-\frac{\partial \Phi_{i}}{\partial x} \cdot \frac{\partial \Psi_{i}}{\partial y} + \frac{\partial \Phi_{i}}{\partial y} \cdot \frac{\partial \Psi_{i}}{\partial x} \right).$$

whence our lemma follows at once.

7. Given a $M \subset E_2$ and a mapping Φ of M into E_n we put for any $N \subset M$

$$\| \Phi \|_{N} = \sup | \Phi(z) |.$$

We say that Φ is Lipschitzian on N with constant λ provided $|\Phi(u) - \Phi(v)| \le \lambda |u - v|$ whenever $u, v \in N$.

7,1. Definition. Let $A \in A$, $\Psi \in C_n^{(0)}(A)$. We define

 $\alpha(A, \Psi) = \sup P(A, \Phi, \Psi),$

 Φ ranging over the class of all $\Phi \in C_n^{(1)}$ with $\| \Phi \|_{E_2} \leq 1$.

7,2. Lemma. Let $A \in \tilde{A}$, $\Psi = [\Psi_1, ..., \Psi_n] \in C_n^{(1)}$ and suppose that $\left| \frac{\partial \Psi_i(z)}{\partial x_i} \right| \leq \frac{1}{2} \left| \frac{\partial \Psi_i(z)}{\partial x_i} \right|$

$$\left|\frac{\partial \Psi_i(z)}{\partial x}\right| \leq \lambda, \quad \left|\frac{\partial \Psi_i(z)}{\partial y}\right| \leq \lambda \quad (i=1,...,n)$$

whenever $z \in A$. Then, for every $\Phi \in C_n^{(1)}$,

$$|P(A. \phi. \Psi)| \le \lambda \sqrt{2} \|\phi\|_{\lambda} \cdot \|A\|.$$

9

In particular,

Proof. Writing
$$v = \left[-\phi \circ \frac{\partial \Psi}{\partial y}, \phi \circ \frac{\partial \Psi}{\partial x} \right]$$
 we obtain by 6,4 and 6,1

$$|P(A, \Phi, \Psi)| = |P(A, \Psi, \Phi)| = |\int v dP^A| \le ||v||_{A} \cdot ||A||.$$

Clearly, $||v||_{\dot{A}} \leq \lambda \sqrt{2} ||\phi||_{\dot{A}}$.

7,3. Lemma. Let h be a function which is Lipschitzian on E_2 with constant λ . Then there exists a sequence of functions $h_k \in C_1^{(1)}$ (k = 1, 2, ...) such that $h_k \to h$ uniformly on E_2 as $k \to \infty$ and

$$\left| \frac{\partial h_k}{\partial x} \right| \leq \lambda, \quad \left| \frac{\partial h_k}{\partial y} \right| \leq \lambda \quad (k = 1, 2, ...).$$

Proof. This lemma is well known.

7,4. Proposition. Let $A \in \tilde{A}$ and let Ψ be a mapping of A into E_n , which is Lipschitzian on A with constant λ . Then (10) is valid.

Proof. We may assume that $\Psi = [\Psi_1, ..., \Psi_n]$, where Ψ_i $(1 \le i \le n)$ are Lipschitzian on E_2 with constant λ (cf. [8], lemma 1, p. 341). According to 7,2 we have a sequence $\Psi_i^k \in C_1^{(1)}$ (k = 1, 2, ...) such that $\Psi_i^k \to \Psi_i$ $(k \to \infty)$ uniformly on E_2 and $\left|\frac{\partial \Psi_i^k}{\partial x}\right| \le \lambda$, $\left|\frac{\partial \Psi_i^k}{\partial y}\right| \le \lambda$. Put $\Psi^k = [\Psi_1^k, ..., \Psi_n^k]$. Clearly, $\Psi^k \in C_n^{(1)}$ and, in view of 7,2, $|P(A, \Phi, \Psi^k)| \le \lambda \sqrt{2} \|\Phi\|_{\hat{A}}$. $\|A\|$ for an arbitrary $\Phi \in C_n^{(1)}$. Making $k \to \infty$ we obtain (9) (cf. the definition 6,1). Hence (10) easily follows.

8,1. Lemma. Let $A \in \tilde{\mathbf{A}}$ and suppose that $\Psi \in \mathbf{C}_n^{(0)}(A)$, $\alpha(A, \Psi) < \infty$. Then, for every $\Phi \in \mathbf{C}_n^{(1)}$,

$$|P(A, \Phi, \Psi)| \leq ||\Phi||_{\dot{A}} \cdot \alpha(A, \Psi)$$

Proof. Given $\varepsilon > 0$ and $\Phi \in C_n^{(1)}$ we can fix a $\tilde{\Phi} \in C_n^{(1)}$ such that $\|\tilde{\Phi}\|_{E_2} \le \varepsilon + \|\Phi\|_{\hat{A}}$ and $\tilde{\Phi} = \Phi$ in some neighbourhood of \hat{A} (cf. lemma 5 in [7]). According to the definition 7,1 we have $|P(A, \Phi, \Psi)| = |P(A, \tilde{\Phi}, \Psi)| \le \|\tilde{\Phi}\|_{E_2} \cdot \alpha(A, \Psi) \le (\varepsilon + \|\Phi\|_{\hat{A}}) \cdot \alpha(A, \Psi)$. Since ε was an arbitrary positive number, the proof is complete.

8,2. Remark. Let $A \in \tilde{A}$, $\Psi \in C_n^{(0)}(A)$, $\alpha(A, \Psi) < +\infty$. Fix $\Phi \in C_n^{(0)}(A)$ and suppose that $\Phi^k \in C_n^{(1)}$ (k = 1, 2, ...),

$$\lim_{k \to \infty} \| \boldsymbol{\phi} - \boldsymbol{\phi}^k \|_{\dot{A}} = 0. \tag{11}$$

It follows easily from 8,1 that the limit $\lim_{k\to\infty} P(A, \Phi^k, \Psi)$ exists and is independent of the choice of the sequence $\{\Phi^k\}_{k=1}^{\infty}$ fulfilling (11). We are thus justified to introduce the following definition:

8,3. Definition. Let $A \in \tilde{A}$, $\Psi \in C_n^{(0)}(\dot{A})$, $\alpha(A, \Psi) < +\infty$. For any $\Phi \in C_n^{(0)}(\dot{A})$ put

$$P(A, \Phi, \Psi) = \lim_{k \to \infty} P(A, \Phi^k, \Psi),$$

where $\{\phi^k\}_{k=1}^{\infty}$ is a sequence of mappings in $C_n^{(1)}$ fulfilling (11)

9. The symbols $f^1, ..., f^m, C, \omega, G_p, G$ will have the same meaning as in the theorem 1,1. Further put $U_l = \{z; z \in E_2 - C, \omega(z) \ge l\}$.

y,1. Lemma

$$\sum_{l=-\infty}^{\infty} \|U_l\| < +\infty, \qquad \sum_{p=-\infty}^{\infty} \|G_p\| < +\infty.$$
 (12)

In particular, U_p , $G_p \in A$ for every integer p and, by proposition 7,4,

$$\sum_{l=-\infty}^{\infty} \alpha(U_l, \Psi) < +\infty, \qquad \sum_{p=-\infty}^{\infty} \alpha(G_p, \Psi) < +\infty$$
 (13)

for every Lipschitzian mapping Ψ of C into E_n .

Proof. Since $\sum_{t} \| U_t \|_{t} \le \sum_{t} \int_{E_t} N_t(\dot{U}_t, y) \, dy$, $\sum_{p} \| G_p \|_{t} \le \sum_{p} \int_{E_t} N_t(\dot{G}_p, y) \, dy$, it is sufficient to prove that the functions

$$\sum_{l} N_{l}(U_{l}, y), \qquad \sum_{p} N_{l}(G_{p}, y) \qquad (i = 1, 2)$$

are integrable (with respect to the variable y) on E_1 . Clearly, we may consider the case i=2 only. Let us keep the notation introduced in [2], section 15, pp. 589-591. From investigations described there we obtain for every $y \in E_1 - M$

$$N_2(U_l, y) \le \sum_{j=1}^n |s_y(U_l, u_j)|, \qquad \sum_l \sum_{j=1}^n |s_y(U_l, u_j)| \le \psi(y).$$

Noticing that M has measure zero and ψ is integrable on E_1 we see that integrability of $\sum_{i} N_2(U_i, y)$ is checked. Similarly, investigations described in [2], p. 592, imply the inequality

$$\sum_{p} N_2(\dot{G}_p, y) \le 2\psi(y) \qquad (y \in E_1 - M)$$

showing that $\sum_{p} N_2(\hat{G}_p, y)$ is integrable on E_1 .

288

9,2. Theorem. Let $\Phi \in C_n^{(0)}(C)$ and let Ψ be a Lipschitzian mapping of C into E_n .

$$\sum_{k=1}^{m} \int_{f^{k}} \Phi \, \mathrm{d} \Psi = \sum_{l=1}^{\infty} \left\{ \sum_{p \ge l} \left[P(G_{p}, \Phi, \Psi) - P(G_{-p}, \Phi, \Psi) \right] \right\}. \tag{14}$$

r root. We shall first prov

$$\sum_{k=1}^{m} \int_{f^{k}} \Phi \, d\Psi = \sum_{l=1}^{\infty} \left[P(U_{l}, \, \Phi, \, \Psi) + P(U_{1-l}, \, \Phi, \, \Psi) \right], \tag{15}$$

$$P(U_{1}, \Phi, \Psi) + P(U_{1-1}, \Phi, \Psi) = \sum_{p \ge 1} [P(G_{p}, \Phi, \Psi) - P(G_{-p}, \Phi, \Psi)], \quad (16)$$

whence (14) follows at once. In view of (13) we may assume that $\Phi \in C_n^{(1)}$ (cf. also 8,2). Define $\chi = [\chi_1, \chi_2]$ by (7). We obtain from 5,1

$$\sum_{k=1}^{\infty} \int_{f^k} \Phi \, \mathrm{d} \Psi = -\sum_{k=1}^{m} \int_{f^k} \chi \, \mathrm{d} \iota. \tag{1}$$

Keeping the notation introduced in [2], section 17, we derive from theorem 15 and remark 17 in [2]

$$\sum_{k=1}^{m} \int_{f^{k}} \chi \, \mathrm{d}i = \sum_{l=1}^{\infty} \left[P_{0}(U_{l}, \chi) + P_{0}(U_{1-l}, \chi) \right]. \tag{15^{bis}}$$

In a similar way we obtain from investigations on p. 592 in [2]

$$P_0(U_I, \chi) + P_0(U_{I-I}, \chi) = \sum_{p \ge I} [P_0(G_p, \chi) - P_0(G_{-p}, \chi)].$$
 (16^{bis})

Comparing the definition 6,1 of the present note with the remark 17 in [2] we see

$$P_0(U_l,\chi) = -\int_{U_l} \tilde{\chi} d\mathbf{p} U_l = -P(U_l, \phi, \Psi),$$

$$P_0(G_p,\chi) = -P(G_p, \phi, \Psi).$$

Thus (15^{bis}), (16^{bis}) and (18) imply (15), (16).

10,1. Lemma. Let $A \subset E_2$ be a bounded set, $A_k \subset A$ (k = 1, 2, ...) and suppose that

 $\lim_{k\to\infty} \mathbf{L}(A-A_k) = 0, \lim \sup_{k\to\infty} ||A_k|| < +\infty.$

Let Ψ be a Lipschitzian mapping of \overline{A} into E_n .

$$\alpha(A, \Psi) < +\infty$$
, $\limsup_{k \to \infty} \alpha(A_k, \Psi) < +\infty$

(19)

and, for every $\Phi \in C_n^{(0)}(A)$,

$$\lim_{k \to \infty} P(A_k, \phi, \Psi) = P(A, \phi, \Psi). \tag{20}$$

obtain (19). Hence it folows easily that (20) can be extended, by continuity, to any Proof. By lemma 4,2, (20) is true for any $\Phi \in C_n^{(1)}$ (cf. 6,1). In view of 7,4 we

defined almost everywhere on A such that the Lebesgue integral $\iint \gamma$ is available for every rectangle $K \subset A^{\circ}$. (Consequently, $\iint_{\mathbf{R}} \gamma$ exists for every two-dimensional figure $B \subset A^{\circ}$ as well.) If 10,2. Definition. Let $A \subset E_2$ be a bounded set, L(A) = 0. Let γ be a function

$$\lim_{k \to \infty} \iint_{A_k} \gamma \tag{21}$$

exists for every sequence of figures $A_k \nearrow A^\circ (k \to \infty)$ with

$$\sup_{k} H_{1}(\dot{A}_{k}) < +\infty, \tag{22}$$

its value will be denoted by $L(A, \gamma)$. then the limit (21) is independent of the choice of figures $A_k \to A^\circ$ fulfilling (22) and

problems were not available to us. integral. For more general study of analogous extensions the reader may consult [9]. integrable on A, so that $L(A, \gamma)$ may be considered as an extension of the Lebesgue The articles [10], [11] reviewed in Ref. jour. 1959 which seem to deal with similar 10,3. Remark. Of course, $L(A, \gamma) = \iint \gamma$ whenever γ happens to be Lebesgue

and suppose that Ψ is a Lipschitzian mapping of A into E_a . 10,4. Proposition. Let $A \subset E_2$ be a bounded set, $H_1(A) < +\infty$. Let $\Phi \in C_n^{(0)}(\overline{A})$ If $\gamma = \text{rot}(\Phi, \Psi)$ in A° , then

$$P(A, \Phi, \Psi) = L(A, \gamma).$$

This proposition follows easily from 10,1 and 10,2.

- 11. As an easy consequence of 9,2 and 10,4 we obtain the following theorem.
- 11,1. Theorem. Let us keep all the assumptions and notation of the theorem 1,1. Then

$$\sum_{k=1}^{m} \int_{f^k} \Phi \, d\Psi = \sum_{l=1}^{m} \left\{ \sum_{p \ge l} \left[L(G_p, \gamma) - L(G_{-p}, \gamma) \right] \right\}. \tag{23}$$

- 11,2. Remark. Theorem 1,1 is merely a corollary of 11,1.
- 11,3. Remark. The right hand side in (23) may be replaced by $\sum_{p=1}^{p} p[L(G_p, \gamma)]$ $L(G_{-p}, \gamma)$] if this series happens to converge

and let $\Gamma = [\Gamma_1, ..., \Gamma_n]$ be a Lipschitzian mapping of $V = \Psi(G)$ into E_n . Suppose 11,4. Remark. Let $\Psi = [\Psi_1, ..., \Psi_n]$ be a Lipschitzian mapping of G into E_n

> respect to V at any $u^0 = [u_1^0, ..., u_n^0] \in V - M$. Put $\Phi(z) = \Gamma(\Psi(z))$, that $M \subset V$, $L\Psi^{-1}(M) = 0$ and that $\sum_{n=1}^{\infty} \tau_k^i(u^n) (u_k - u_k^0)$ is the differential of Γ^i with

$$\gamma(z) = \sum_{\substack{i,k=1\\i < k}}^{n} \left[\tau_i^k(\Psi(z)) - \tau_k^i(\Psi(z)) \right]. \quad \frac{\frac{\partial \Psi_i(z)}{\partial x}}{\frac{\partial \Phi_k(z)}{\partial x}}, \quad \frac{\frac{\partial \Psi_i(z)}{\partial y}}{\frac{\partial \Psi_k(z)}{\partial y}}$$

as far as the symbols involved are meaningful. Then $\gamma = \text{rot}(\phi, \Psi)$ in G. This follows at once from theorem 12 in [12].

This assertion can be combined with 11,1.

REFERENCES

- Radó T., Length and area, New York 1948.
 Král J., О криволинейных интегралах на плоскости, Чех. мат. жур. т. 7 (82), 584—598.
- [3] Whitney H., Geometric integration theory, Princeton 1957 (русский перевод: Геометрическая теория интегрирования, Москва 1960)
- [4] Krickeberg K., Über den Gaüsschen und den Siokesschen Integralsatz III, Math. Nachrichten 12 (1954), 341-365,
- [5] Král J., Poznámka o množinách, jejichž charakteristická funkce má za parcidlní derivaci zobecněnou míru, Čas. pro pěst. mat. 86 (1961), 178-194.
- [6] Král J. und Mařík J., Der Greensche Satz, Čech. mat. žur. 7 (82), 1957, 235-247.
- [7] Mařík J., The surface integral, Čech. mat. žur. 6 (81), 1956, 522-557.
- [8] Radó T. and Reichelderfen P. V., Continuous transformations in analysis, Berlin-Göttingen-Heidelberg 1955.
- [9] Mařík J., Uneigentliche mehrfache Integrale, Wiss. Zeitschr. Humboldt-Univ. Berlin, Math.-Nat. Reihe X (1961) 3/4, 413-414.
- [10] Лепина Э. И., Несобственные интегралы в п-мерном пространстве, Уч. зап. Латв. ун-та, 1958, 20, 105—124 (см. Реф. жур. 1959, реф. 7052).
- [11] Лепина Э. И., Обобщенная формула Грина, ibid. 125—135 (см. Реф. жур. 1959, реф. 7053). [12] Král J., On Lipschitzian mappings from the plane into Euclidean spaces, Čech. mat. žur. 8 (83),
- [13] Černý J.—Mařík J., Integrální počet II, Praha 1961.

Received May 17, 1962

Katedra matematické analyzy Karlovy university v Praze Katedra matematiky Slovenskej vysokej školy technickej v Bratislave

ЗАМЕТКА К ТЕОРЕМЕ СТОКЕСА ДЛЯ ДВУМЕРНЫХ ИНТЕГРАЛОВ В п-МЕРНОМ ПРОСТРАНСТВЕ

Иосеф Крал, Белослав Рисчан

МУОСТВО

если γ интегрируемая на A. последовательности $\{F_k\}_{k=1}^\infty$ и мы его обозначим через $\mathbf{L}(A,\gamma)$; разумеется $\mathbf{L}(A,\gamma)=\int_{-1}^{\infty}\gamma$ щей требованию $H_1(F_k)<\infty$ существует предел $\lim_{-\infty} \underline{\int} f \gamma$, то этот предел не зависит от далее, L(A)=0 и пусть γ — функция, определенная почти всюду на A и интегрируемая на Символом H_1 , L обозначим линейную меру Хаусдорфа и двумерную меру Лебега соответ каждом интервале K С A° . Если для каждой последовательности фигур F_k С A° , удовлетворяюственно. Пусть A — ограниченное множество в E_2 , A — его граница, $A^\circ = A$ — A. Пусть, ство, которое является соединением конечного числа интервалов будем называть фигурой всюду на G и интегрируемая по Лебегу на каждом интервале $K \subset G$. Будем говорить, что $\gamma = {
m rot}$ бражения множества G в пространство E_n . Пусть, далее, γ — функция определенная почти представление контура K (описываемого в положительном направлении при изменении параметра от a до b). Пусть теперь G — открытое множество в E_2 и пусть $oldsymbol{\phi}$, Ψ — непрерывные ото-Если K — интервал, то обозначим f_K отображение из $V_0(a,b)$, которое даст параметрическое =f(b), обозначим символом $V_0(a,b)$. Если $f\in V(a,b)$ и $\Phi=[\Phi_1,...,\Phi_n], \Psi=[\Psi_1,...,\Psi_n]$ — Стиль тьеса. Словом "интервал" мы будем подразумевать двумерный компактный интервал непрерывные отображения множества $f(\langle a,b
angle)$ в пространство E_n , то полагаем по определению будем говорить, что $f \in V(a,b)$. Подсистему всех $f \in V(a,b)$ удовлетворяющих условию f(a) =обозначим длину пути f, определенную обыкновенным образом. Если $\mathit{v}(a,b,f)<+\infty$, то мы $\int \Phi \, \mathrm{d}\Psi = \sum_{i}^{n} \int \Phi_{i}^{i}(f(t)) \, \mathrm{d}\Psi_{i}^{i}(f(t))$ в предложении, что существуют соответствующие интегралы Если f — непрерывное отображение отрезка $\langle a,b \rangle$ в плоскость E_2 , то символом v(a,b,f)

Теорема. Пусть $f^j \in V_0(a_j,b_j)$ ($1 \le f \le m$), $C = \bigcup_{j=1}^m f^j(\langle a_j,b_j\rangle)$. Для $z \in E_2 \longrightarrow C$ положим $o(z) = \sum_{j=1}^m \inf(z,f^j)$, где $\inf(z,f^j)$ обозначает порядок точки z относительно пути f^j . Пусть $G_p = \{z; z \in E_2 \longrightarrow C, \omega(z) = p\}$, $G = \bigcup_{p \ne 0} G_p$ и пусть на $C \cup G$ определены непрерывные отображения Φ , Ψ в пространство E_n , причем Ψ удовлетворяет условию Липшица. Если $\gamma = \text{гоt}$ (Φ , Ψ) на G, тогда существуют несобственные интегралы $L(G_p, \gamma)$ ($p \ne 0$) и имеет место формула

$$\sum_{j=1}^{m} \int \phi \, d\Psi = \sum_{l=1}^{\infty} \left\{ \sum_{p \ge l} \left[L(G_p, \gamma) - L(G_{-p}, \gamma) \right] \right\}. \tag{*}$$

Правую часть равенства (*) можно заменить на $\sum\limits_{p=1}^{\infty}p[\mathbf{L}(G_p,\gamma)-\mathbf{L}(G_{-p},\gamma)]$ соотв. на $\int\limits_{G}\int\omega\gamma$, если последние символы имеют смысл.