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SEMIGROUP COVERINGS OF GROUPS IT

JAMES WIEGO LD, Manchester (England)

L 4 . - 1. Introduction

The purpose of this note is to confirm two conjectures made in [1]. A groupis
called* a D-group if it is the union of non-empty pairwise disjoint proper subsemi-
groups, and an J-group if it has at least one aperiodic homomorphic image. It was
proved in (1] that every D-group is an J-group, and conjectured that the converse
is not true. We shall confirm this by showing ‘that the group G generated by two
elements a, b with defining relations I .

a’ = p?, ab(a’h)® ab? = | a.n

ia mmmao&o — it was pointed out in [1, page 11] that no group with defining rela-
tions like ( I.1)canbe a D-group: this fact is VEry easy to establish. The second derived
group 6,(G) of G is the cycle generated by 5'°, 5o that it is central and in particular G
is soluble of length 3,

the element [[a?, b, [a, b]] —obviously centra] — has infinite order. This element
generates the second derived group of J, so that J is also soluble of length 3.
I have been unable to construct metabelian examples,

2. The group G

Let us first examine the defining relations

a® = p2 aba’ba*ba*ba’babab? ~ |

* All notation not explained here is to be found in [1].
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of G. As @® and b? are central in G, the second of these can be rewritten as
baba*ba’ba*ba*ba’bab = 1,
b-'b’a~*a’ba*b~'b%a~'a*baa-2a*b-'b*a*ba-"a*b- 'b2ab = 1,
5, @] [b, d] [a*, b] [a, b] $%a*? = 1,
and finally as C A .
lla® 8], [a, B]] b'° = 1. @1

Now the derived m_.o.cm 01(G) of G is generated by all commutators of the form
[d*, b"], where 4 and u are integers; but @ and b2 are central so that /- may be taken
modulé 3  and u modulo 2, which means that 6,(G) is generated by [d?, b] = u
and [g, b] = v. Relation 2.1 shows that [, v] is central in G, which gives immediately
that 6,(G) is central and cyclic, with 5'¢ as generator. Further, 8,(G) is necessarily
second nilpotent — in fact it turns out that is a free second nilpotent group on the
generators u, v. We shall show that G is aperiodic by constructing it as a double
splitting extension with central amalgamations,

The starting-point is a free second nilpotent group H, on two generators, that is,
we take a group H, by two elements u, and vo with defining relations

[ug, vo, ug] = [tg, 05, 10] = 1. & (2.2)

The mapping 8, of the mon._onmaoa of H, given by

- -1
uofo = ug 5 voBo = vg

clearly respects the defining relations (2.2), so it generates an automorphism (also
called B,) of order 2 of H,. Let B, be the splitting extension* of H, by an infinite
cycle whose generator b, induces fo on Hy:

mo = Qﬁﬁﬂo. Vo, Nuou _”Qon Vg, ﬁo”_ = T&og Vo, eo“_ = m. :Wo = tm.~» eWo = eol—v. AN.wv

Then By, as an extension of an aperiodic group by an aperiodic group, is aperiodic:

further, [u,, vy] and Fw.ma central, since

[0, 001" =[5, 05 '] = [t vol,
W = = g, o = (0 = v,
The first of these relations follows from the first of the identities
[e™, K] = [g, i™ :
(eh" = g"h"[h, g™~ 172, 24

valid for any integers m, n and any elements g, h of a second nilpotent group.

* In general, we write Gp(X; R) for the group generated by a set X of elements with defining
relation R, and Gp(X) if R is understood or unimportant,
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Clearly, as H, intersects the cycle generated by b, trivially, the centralcycle
generated by [ug, vo] bL® intersects H, and the cycle Gp(b,) trivially. Thus, if &
is the canonic homomorphism of B, onto B = Bo/Cq, then H = Hyd ~ H,, and
b = bo® has infinite order, so that:

2.5. In the group B generated by three elements #, v, b with defining relations
o, ul =[wo,0]=1, w=u-! = o=l [u, 0] = b-1S,
the subgroup H = Gp(y, v) is free second nilpotent and b has infinite order.

Lemma 2.6. (i) In B, Gp(b) n H'= Gp(6'®) = Gp([u, v]).”
(ii) B is aperiodic.

Proof. (i) It is clear that H ~ Gp(b) = Gp(b'®). Let now xe H n Gp(b) so that
X =hy® = bl where. by € Hy and-1'is an -integer. Then (hoby*) & =1 so that
hobo* is a power of [ug, v,] bo®, say [uo, vol°b3%¢; hence by* = b{%¢ so that x =
= b* = b~"%*c Gp(b'®). This completes the proof of the first part.
(i) It is not difficult to see that every element of B can be written in the form
g = u[u, v]’b?
with suitable integers a B, v, 5. We distinguish two cases:

(A) If § is even, b° is in the centre of B, and, as [u, v] is in the centre of B (both
these follow immediately from the fact that b3 is central in By), then for any
interger n,

%: P Q«neuva T«u eu_au. &:a

But (u*o*)" = w™"v"™[u, v]° for some O, by 2.4; hence
%: - QE_C?_”F e.._m‘@.&

for some ©'. If g" = 1 for some n + 0, then, as [, v] = 5-'% 4P lies in the
cycle generated by b. The first part of the lemma then gives that 4" lies in the
cycle generated by [u,v], so that since H is free second nilpotent on u nad v, ny =
= nf = 0. Consequently o = B=0,g=1[uvlb, so g lies in the cycle generated
by b; and this means it can have finite order if and only if it is the unit element.

(B) If 6 is odd, say & = 26" + 1, then

g = uv*blu, v] B*”,
so that

g = wvPbuvPblu, v]*b*
w o (we?)° ™ b2 u, v)2 6%

woPu= 0P, o]V +2,
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using throughout ‘the fact that 52 ig central. Finally
8" = [, 0] [u, o154 +2
= Hgn eu_uv.+nh~va&..._..n . .
s @lwmaNe+n3+AmﬂT.m . o o AU% N.Avv

Vo pAp2 16k
= } A

for some integer & Now 45’ + 2 — 16¢ * 0 since 26’ + 1 # 8¢; hence g2 has
infinite order and some must g.

Thus we have proved that only the ‘unit element of B is 'of finite order, .and B
is aperiodic. L o .

It will turn out that B is the normal closure of b in the original group G (we shall
not prove this) — hence the use of the letter b in a,omium B.

The next stage is to form a splitting extension of B by an infinite cycle. For clarity
at this point we take an isomorphic copy B, of B with generators Uy, vy, b; and
defining realtions analagous to those’ given-at 2.5, It is a matter of simple routine
to verify that the mapping ay of the generators of B, defined by

uoy = vt viay = uyo; byoy = byost
respects the defining relations of B;. Thus a, generates an endomorphism (also
called a;) of B,. Further, o} is the identity automorphism, as
. uof = ()t = vug?, usay = 010 (uya,) " = :_eMHS =u;
vaf = (uy07h) % = SlneH:mL =u’, vof = (o)t = Vg5 27
biod = iy (01)™" = byor oyt = byt D
biai = byay ()=t = byorto, = by.

This means that a; has a two-sided inverse and is consequently an automorphism
of order 3 of B, . Form the splitting extension of B, by an infinite cycle whose gene-
rator a, induces «, on B, : this is a group G, generated by four elements Uy, v,b,,a,
with defining relations

lug, 04, 4] = g, 0.,0,] = 1 upt = ug o} = v Y,

bt w (2.8)

1V .

—-16 __ a _ -1 ap ~1 ar
by "® = [uy, 0], Zedby - = v 7, vy =wuoy o, by =

Again @, is aperiodic and it is routine to verify that b7 and a? are central in G,.
Let A;, C, be the cycles generated by a; and 47 %43 respectively. Then C, is central
in G, and misses B, and 4 1 S0 that if  is the canonic homomorphism of G, onto
Gy = G,/C,, then B,y ~ B, and a,y = g has infinite order. Thus we have proved
the first part of the following lemma — the second is proved in a manner completely

analagous to that of Lemma 2.6 @):

Lemma 2.9. In the group G generated by elements u, v, b, a with defining relations
0,0l = [0, 0] =1, ¢ = ', =l p-ts _ [u, v],

a -1

— I . § 3
U=y, v = up-!, b* =bo-*, a = b

the subgroup B = Gp(u, v, b) is aperiodic and 4 = Gp(a) is infinite.
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(i) B O A = Go(a®) = Gp(o).
We can now prove the main result.
Theorem 2.10. G, is aperiodic.

Proof. Since B is normal in G, and a° € B, every element of G, can be put in one
of the forms 4, ha, ha® with 4 ¢ B. Obviously, if 4 is of finite order, h = 1 because B
is aperiodic. We shall show first that every element of the form ha is of infinite order,
As G/B is of order 3 so that (ha)® € B, the element hacan have finite order if and only
if (ha)® = 1. Now

(ha)® = haha = haha~'a* = hh*~'g?,
(ha)* = hh*"'a’ha = Wb g4
= hh* 'h R
r = hh*"p 2,

It is easy to check that 4 can be expressed in the form
k= uPlu, v p°

for suitable integers ® B, v, 8. Once again there are two cases, depending on the
parity of §. s

(A) If & is even, b’ is central so that as a® is central,
hh ' he TR = pheipep?
= WY W @ () [, o752
= wo(ou="Yu-Pp-+(up- Yolu, v)*7p38+2 (from 2.7)
= :»%%:L:Lenn:ue%? &»Ie@-e@%?w

this from 2.4, where for any integer k, &(k) = k(k — 1)/2. A little computation
now gives ‘
\Sn;_\%-”% = [u, &m:egneg+nn+~§®$+~.
If this is 1, then as [u, v] = p-16 and b has infinite order,
36 +2 =163y + () — D(0) + o’ + 20p).
But § = 26" so that .
30+ 1 =803y + ¢(B) — () + o + 2ap).

We shall obtain a contradiction by showing that the right hand side of this equation
is never congruent to 1 modulo 3. First, '
83y + O(f) — B(@) + o* + 22f) = AP(F) - d(@) + o® + 2up) (mod 3)
=pB - 1) —afx - 1) + 20* + op (mod 3)
=P+ +a—f+ ap.
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The rest is routine: one verifies that f2 + o + ¢ — B+ apis always congruent
to 0 or 2 modulo 3, in all the 9 cases arising out of the 3 congruences modulo 3
possible for each of & and B.

Hence if § is even, ha is of infinite order.

(B) If 4 is odd, say & = 25 + 1, then
h = bz,
where 7 = [u, v7'6*% is in the centre of Go. Then
hh"hp? = ai%..%@J@?ﬁ&@&ww

and consideration of the image of this element in Go/Gp(u, v) shows it (the orginal
element) to be of the form v'p%+5% for some v’ € Gp(u, v). If it is 1, then by lemma
2.6(i), 5°+%% lies in Gp(b'®). This means that 5 + 64" is divisible by 16, which is
a manifest contradiction. Thus hh°7 REB s néver the unit element, and it follows -
that ka has infinite order.

The proof concludes with the remark that 4a® must also have infinite order, since

(ha®)? = haPha® = ppo-g*
= hh""’a’a

is of the form h'a with k' e B.

It remains only to show that G, is isomorphic with G. The defining relations
of G, in terms of the generators u, v, g, b are .

[ 0,u] = [u,0,0] = 1, 4= uml, b= vt
u=yp-l o w-',  p= bv-t,
b = 0], & =2

From these it follows straight away that
v =" = [q, b]
4= 0" = [a,b][a, b] = [a?, B}

relations of G, are oonmm.czm:,onm of the last two; these are precisely the relations 2.1,
so that in fact G and G, areisomorphic,

To sum up, define a C-group 10 be one whose second derived group is central. With the
notation of [1],

Theorem 2.11 []] ~ [€l= DA [@].

: 3. The group J

Here we shall only state results: the proofs are a matter of simple routine.
We again start with a free second nilpotent group on two generators:

H = Gp(u, v; [, v, u] = [u, v, 0] = 1),
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and form the splitting extension of A by a cycle of order 2 whose generator § induces
the automorphism of order 2 of H generated by the mappings u — u~! y o p-1.

H = Gp(u, v, b; [u, v, u] = o] =1, 2 =1, b = u-t o = v-h).

In this « and v stil] generate a free second nilpotent group, so in particular [u, v]
is of infinite order. Next form the splitting extension J of B be 1 cycle of order 3
whose generator a induces the automorphism of B defined by the mappings

u— -1 el:cL_ b — byt

J is generated by u, v, a, b with the defining relations of B together with
=1 4= vl =l g bo-t,

Note (as with G) that p = la, 8], u = [a?, b] so that J is generated by g and b, and
that [y, o] is central, as
[, 0] = [=", 0=1) = [, ¢]

[, o = [*", wo-'] = o=, u] = [, u].

This completes the €xample, except for the simple verification that the group J
constructed here is in fact that mentioned in the introduction.
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IIOKPRITUE I'PYIII IMONYIPYIIIAMHU

Hoxeiimc <»n.~.ohn

Pesrome

Hacrosmas crarea ABJISETCSA NPOAOIDKEHHEM CTATHE (1). Beratse (1) BBeneno nonsrye D-rpyrmes
(310 rpynmna, ABNSAIOAACA O6henuHeIeM ONAPHO HeMEPeCeKarOMMXCs cobCcTBeHNHbIX HOANOIy-
I'DYIN) ¥ HoHsTHE S-rpymsr (aT0 Tpynna, KOTopas UMEET X0Ta 65l ommy ANCPHOANIECKMIT TOMO~
MOpOHEI obpas) u AOKA3BIBACTCS, YTO BCAKAS D-rpyma seasercs S-rpymmoin. B HacTosueit cratepe
nocTpoena Tpymna G, koTopas semsercs J-Tpymnot, Ho e sBasercy D-rpyrmoit. Kpome TOTO,
TIOCTPOEH Hpumep TPynnbt ¢ 06pasyromumy koReYHOro TIOpANKA, IEHTP KOTOPOH He spisieTcs ne-
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