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THE HZHHW<>H TOPOLOGY OF AN I-GROUP

JAN JAKUBIK, Kosice

Let G be an lgroup, a,ceG. We m_rm= call @ an archimedean element, if g > 0
and if for each b e G there exists a positive integer # such that ng £ b. The sets

Ii(c) = {x|xeG, x < ¢}, L) = {x|xeG, x> c}

are called infinite H..Engmw (in G). The interval topology of G is defined by taking
as a sub-basis for the closed sets all infinite intervals and the set G. We will consider
the following condition:

(1) G is a topological group in its interval topology.

G. Birkhoff [1, p. 233, problem 104] has asked the question: Does any L-group
satisfy the condition (D? It is a rather trivial fact that .mzv\ ordered (= linearly
ordered) /-group satisfies (¢). E. S. Northam [4, proposition 6] proved that the
additive group 4 of all continuous real-valued functions defined on the closed
unit interval (using the natural ordering) is an l-group which does not satisfy (7).
T.H. Choe .E has shown: If each non-empty subset M < G* has a minimal
element and if G satisfies (#), then G is ordered. In the recent paper [2] P. Conrad
studies -groups which fufill the condition (F): Each'ae G, a> 0 is greater than
or equal to at most a finite number of disjoint o_oEga. (The elements c,deG
are called disjoint if ¢~ d = 0.) It is proved in [2, theorem 6.3]: If G satisfies the
conditions (F) and (f) then G is ordered. (Evidently this theorem includes the result
of Choe but not that of Northam.) In this note we prove the following

Theorem. If there exist disjoint archimedean elements a, b€ G then G does not
satisfy (1).

Corollary. Any archimedean L-group satisfying (f) is ordered.

Clearly this implies the result of Northam. Since an I-group in which each non-
empty subset M < G* has a minimal element js archimedean (this follows easily
from [1, p. 236, Theorem 21]) the result of Choe is also a consequence of the
corollary.

1. Let a,beG, a>0, b > 0, anb =0. Let I be the set of all integers, A =
= {x|x = ma, mel}, B = {y|y = nb, nel}, C={zlz=x +y, xe€d, x € B}.
Thena)Cisan l-subgroup of G, and b) Cisisomorphic with the direct product ({1, p. 222)]
of L-groups A, B. . )
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Proof. Let m, nel, m > 0,n>0,m,neri= L,2. Fromanb =0 follows
(cf. {1, p. 219)) ma A nb = O, ma + nb = mgnp = nb + ma, hence ma+ nb =
= n,b + m,a. Therefore C is a subgroup of the group G. Let m, = max (my, m,),
13 = max (n,, n,), m, = min (my, my), n, = min (ny,my), z, = ma + nb. If my, n,
(i=1,2)are non-negative, then z, = m;a U nb, hence (because of the distributivity

of G)

1)) Z1Y 2 = mya + n,b, 10z =mea + nb.

If m, n; are arbitrary, we choose m, n such that m + m, > On+n2>20i= 1, 2;
let 0 € {n, U}. From : h

102 =((2, + 2)2(2, + 2)) - 2

In the following C has the same meaning as above.

2. Let a, b be archimedean elements. Let ye G A=LwnC=+g, Then A is
an infinitive interval in C. .

Proof. Let mga + nebe A. Put M = {mimel ma + nob = u). Since a is
archimedean, there exists the greatest element my in M. Denote N = {nlnel
"M@ + nb X u}; there exists the greatest element n, .in N, If ma + nb Mv
= ma + nb < u, then ny = n, ma+ nb = u, hence n, = n; moreover m; < Mv

ma + nob < u, thus m = m;. This shows that € =ma+nb is the greatest:

element of 4. Evidently each element ce C, ¢ = ¢, belongs to 4.
A similar result holds for L) n C

3. Let A,-B be nonzero e,w&mwm& wxe.:%.ﬁ D
in its interval topology. z—e-. -

This assertion is proved (though not explicitly stated) in [2, proof of the
lemma 6.2].

A X B. Then D is not Hausdorff

ﬁ“ 9€C, p £ q. mcvgmo that G satisfies (?). Then there exist infinite intervals
I, .., I" such that Ji= G and no 7° contains both p g (this follows easily from
the definition of the sub-basis; cf. also [2, proof of the lemma 6.5, and 6.4)). It
follows from 2 that the set/'n C = Jiis an infinite interval in C or Ji = 0; clearly
UJ; = C and no J; contains both » and q. Hence C in Hausdorff in its interval
topology. But from 1 and 3 we obtain that C s not Hausdorff, and we have
a contradiction,
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i Vysokej skoly technickef
v Koliciah

NHTEPBAJIbLHASA TOHOJIOTUA B L-TPYIIIIAX

Au SAxy6uk

Pesrome

Ilyers G — l-rpymma; a, c € G. Dnement g HA3BIBACTCA APXHMENOBBIM, €CITH @ > 0 U eciu ans
kaxpmoro b€ G cymectsyer HaTypasbHOe YMCIO 1 TaKoe, 9T0 na £ b. MuoxsncTBa

Ii(c) = ?_meuxM&. I(c) = ,Mx_x.mQukW.&.

HA3BIBAFOTCH GECKOHEMHSIMH MHTEpBaNaMy B G, Hnreppansuas Tononorns 8 G oupeneneHa Tak,
4TO B Ka4ecTBe Cy66a3n 3aMKHYTBIX MHOXECTB Gepercs cucTema, COCTOSIAN M3 BCeX GECKOHETHDIX
HHTEPBAJIOB M M3 MHOXECTBA G. Mbr TOBOPHM, YTO G 06IafaeT CBOACTBOM (), ecru G — Tononoru-
Heckas rpymma B MHTEPBANBHON TOMONOrHY, JHokazana crenyromasn

Teopema. Ecia B G CYWECTBYIOT apXMMEROBHI JIEMEHUBL a,b,anb =0, 10 G ne obnapaer
CBOHACTBOM (7).

Criencteue. Apxumenosa l-rpymna, o6namaromas croiicreom (1), aBisercy YOOPANOYEHHOH,

W3 sroro BEiTekaroT Kak HacTHbIe cnyyau Teopembl Hoprrama [4] = You [3], xacarommecs
MHTEPBALHOR TONONOTHY B /-Tpynne.
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