THE INTERVAL TOPOLOGY OF AN 1-GROUP

JÁN JAKUBÍK, Košice

Let G be an l-group, $a, c \in G$. We shall call a an archimedean element, if a > 0 and if for each $b \in G$ there exists a positive integer n such that $na \ngeq b$. The sets

$$I_1(c) = \{x \mid x \in G, \ x \le c\}, \qquad I_2(c) = \{x \mid x \in G, \ x \ge c\}$$

are called infinite intervals (in G). The interval topology of G is defined by taking as a sub-basis for the closed sets all infinite intervals and the set G. We will consider the following condition:

(t) G is a topological group in its interval topology.

G. Birkhoff [1, p. 233, problem 104] has asked the question: Does any L-group satisfy the condition (t)? It is a rather trivial fact that any ordered (= linearly ordered) L-group satisfies (t). E. S. Northam [4, proposition 6] proved that the additive group A of all continuous real-valued functions defined on the closed T. H. Choe [3] has shown: If each non-empty subset $M \subset G^+$ has a minimal studies L-groups which fufill the condition (F): Each $a \in G$, a > 0 is greater than or equal to at most a finite number of disjoint elements. (The elements c, $d \in G$ conditions (F) and (t) then G is ordered. (Evidently this theorem 6.3]: If G satisfies the of Choe but not that of Northam.) In this note we prove the following

Theorem. If there exist disjoint archimedean elements $a, b \in G$ then G does not satisfy (t).

Corollary. Any archimedean l-group satisfying (t) is ordered.

Clearly this implies the result of Northam. Since an l-group in which each non-empty subset $M \subset G^+$ has a minimal element is archimedean (this follows easily from [1, p. 236, Theorem 21]) the result of Choe is also a consequence of the corollary.

1. Let $a, b \in G$, a > 0, b > 0, $a \cap b = 0$. Let I be the set of all integers, $A = \{x | x = ma, m \in I\}$, $B = \{y | y = nb, n \in I\}$, $C = \{z | z = x + y, x \in A, x \in B\}$. Then a) C is an I-subgroup of G, and b) C is isomorphic with the direct product ([1, p. 222)] of I-groups A, B.

(i=1,2) are non-negative, then $z_i=m_i a \cup n_i b$, hence (because of the distributivity $n_3 = \max(n_1, n_2), m_4 = \min(m_1, m_2), n_4 = \min(n_1, n_2), z_i = m_i a + n_i b.$ If m_i, n_i = $n_1b + m_1a$. Therefore C is a subgroup of the group G. Let $m_3 = \max(m_1, m_2)$, (cf. [1, p. 219]) $ma \cap nb = 0$, $ma + nb = ma \cup nb = nb + ma$, hence $m_1a + n_1b = nb + ma$ Proof. Let $m, n \in I, m > 0, n > 0, m_i, n_i \in I, i = 1, 2$. From $a \cap b = 0$ follows

(1)
$$z_1 \cup z_2 = m_3 a + n_3 b, \quad z_1 \cap z_2 = m_4 a + n_4 b.$$

If m_i , n_i are arbitrary, we choose m, n such that $m + m_i \ge 0$, $n + n_i \ge 0$, i = 1, 2;

$$z_1 \circ z_2 = ((z_1 + z) \circ (z_2 + z)) - z$$

immediate that the mapping $C \to A \times B$ defined by $ma + nb \to (ma, nb)$ is an follows that in this case (1) also holds. Thus the assertion a) is proved. It is now

In the following C has the same meaning as above.

an infinitive interval in C. 2. Let a, b be archimedean elements. Let $u \in G$, $A = I_1(u) \cap C \neq \emptyset$. Then A is

element of A. Evidently each element $c \in C$, $c \le c_1$ belongs to A. $ma + n_0b \le u$, thus $m = m_1$. This shows that $c_1 = m_1a + n_1b$ is the greatest $m_1a + nb \le u$; there exists the greatest element n_1 in N. If $m_1a + n_1b \le u$ $\leq ma + nb \leq u$, then $n_1 \leq n$, $m_1a + nb \leq u$, hence $n_1 = n$; moreover $m_1 \leq m$, archimedean, there exists the greatest element m_1 in M. Denote $N = \{n | n \in I,$ A similar result holds for $I_2(u) \cap C$. Proof. Let $m_0a + n_0b \in A$. Put $M = \{m | m \in I, ma + n_0b \le u\}$. Since a is

lemma 6.2]. in its interval topology. This assertion is proved (though not explicitly stated) in [2, proof of the 3. Let A, B be nonzero ordered groups, $D = A \times B$. Then D is not Hausdorff

topology. But from 1 and 3 we obtain that C is not Hausdorff, and we have $\cup J_i = C$ and no J_i contains both p and q. Hence C in Hausdorff in its interval follows from 2 that the set $I^i \cap C = J_i$ is an infinite interval in C or $J_i = \emptyset$; clearly the definition of the sub-basis; cf. also [2, proof of the lemma 6.5, and 6.4]). It $P, q \in C, p \neq q$. Suppose that G satisfies (1). Then there exist infinite intervals $I^1, ..., I^n$ such that $\cup I^i = G$ and no I^i contains both $p \neq q$ (this follows easily from 4. Proof of the theorem. Let a, b be disjoint archimedean elements of G. Let

REFERENCES

- [1] Birkhoff G., Lattice theory, revised ed., New York 1948
- [2] Conrad P., Some structure theorems for lattice ordered groups, Trans. Amer. Math. Soc. 99 (1961), 212-240.
- [3] Choe T. H., The interval topology of a lattice-ordered group, Kyungpook Math. Journ. 2 (1959),
- [4] Northam E. S., The interval topology of a lattice, Proc. Amer. Math. Soc. 4 (1953), 824-827.

Received January 15, 1962

Vysokej školy technickej Katedra matematiky v Košiciah

ИНТЕРВАЛЬНАЯ ТОПОЛОГИЯ В L-ГРУППАХ

Ян Якубик

Резюме

каждого $b \in G$ существует натуральное число n такое, что $na \leq b$. Множнства Пусть G-I-группа; $a,\,c\in G$. Элемент a называется архимедовым, если a>0 и если для

$$I_1(c) = \{x \mid x \in G, x \le c\}, \qquad I_2(c) = \{x \mid x \in G, x \ge c\}$$

ческая группа в интервальной гопологии. Доказана следующая интервалов и из множества G. Мы говорим, что G обладает свойством (t), если G — топологичто в качестве суббазы замкнутых множеств берется система, состоящая из всех бесконечных называются бесконечными интервалами в G. Интервальная топология в G определена так,

свойством (t).Теорема. Если в G существуют архимедовы элемениы $a,b,a\cap b=0$, то G не обладает

Следствие. Архимедова l-группа, обладающая свойством (t), является упорядоченной.

интервальной топологии в *t*-группе. Из этого вытекают как частные случаи теоремы Нортгама [4] и Чои [3], касающиеся