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SEMICHARACTERS OF THE MULTIPLICATIVE
SEMIGROUP OF INTEGERS MODULO m

By BOHUMIR PARIZEK and STEFAN SCHWARZ, Bratislava

Let S be a commutative semigroup. A semicharacter of S is a complex-valued
multiplicative function defined on S that is not identically zero.

Let m = pi' ... pi", a; 2 1, be the decomposition of the integer m > 1 into
distinct primes. The set of all residue classes modulo m is denoted by S(m). For an
integer x, [x] denotes the residue class containing x. Under the usual multiplication
[x)¥] = [xyl, S(m) is a semigroup. The subgroup of S(m) containing all residue
classes [x] such that (x, m) = 1 is denoted by G(m).

The purpose of this paper is to find all semicharacters y of S(m), especially also to
compute y([x]) explicitly in terms ‘of the integer x for an arbitraty semicharacter y
of S(m). : ‘ :

The general theory of semicharacters of a finite (and some types of infinite) com-
mutative semigroups has been given independently by Hewitt and Zuckerman ([1])
and by one of us ([5]). The present paper is independent of the general theory contai-
ned in [1] and [5].

Semicharacters of S(m) are treated in a forthcomming paper of Hewitt and Zucker-
man ([2]), which the authors kindly gave to our disposal. Qur presentation is based
on the results of [4], where an explicit decompositica of S(m) into a direct product
of subsemigroups of prime power order is given. For convenience of the reader these
results are shortly reproduced below.

1

It is easy to see that S(m) contains 2" idempotents (including [0] and [1]). An
idempotent {e] # [1] is called maximal if the relation [e]{f] = [e], in which [f] % [1]
and [f]is an idempotent, implies [e] = [f]. ‘

In [3] we proved that S(m) contains exactly r maximal idempotents. Each of them
is of the form [e;] = [pa;], where [a;] is an element € G(m).*

The following is the main result of [4]:

* [a;1 € G(m) is, in general, not uniquely determined by [e ;1 and under suitable conditions there
may exist also an [b;] € S(m) — G(m) with the property [e;] = [p}'b;].
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Theorem 1. Let [e;] be a maximal idempotent of S(m). Denote T; = {[x1] [x] € S(m),
[xle;] = [e1}. Then S(m) can be written in the form of a direct product

Sm)=T,.T,... T, )

Denote further G; = {[x]| [x] € G(m), [x][e;] = {e1}. Then G(m) can be written
as a direct product of the r subgroups .

Gm) = G,.Gy. ... .G,.

m 0<
o =

14 h.k

The semigroup T; contains exactly p¥ different elements: T; = {1 e; + k

<kZpy-— H,M . The group G, contains @(py)=py — p7 "' different elements:

Q.«."”N\LIFMH.. mOMFMEW.—Iﬂ,:ﬁuE.\VHW
il
It follows directly from the definition of 7 that [e;] is the zero element of the
semigroup T;. (But of course if r > 1 it is not a zero element of the whole semi-
group S(m).)

Further, since {1][e;] = lej, T; (and G;) contains the element [1], which is the
unity element of S(m), T; and G;.

Clearly G; < T; and G; + T;. G; is the largest group contained in T; and
having [1] as the unity element. This follows from the following considerations.

Let be [le T, — G;. We then can write [5] = | ¢+ k—~| with (&,p) > 1.
P;
Now, since any product containing [e;] and dx_ is [0], we have
. b.‘s
m el mY . :
[l =|e+k—| =&+ K| for every integer p = 1. )
by Pj

Ifespecially p = a;, wehave [6)° = [e;]. By other words: Every element [ble T; - G;
considered as an element of the semigroup T} is nilpotent and cannot be contained
in a group containing f1}.as the unity element.

This argument shows at the same time that 7} cannot contain idempotents different
from [1] and [e;]. ’ _

Remark 1. The semigroup 7 is isomorphic to. the semigroup S(p}’). To prove

e

this denote the residue class (inod p}’) containing x by x> and consider the mapping
S.+w§ mﬁ.lAw me@wv.

Py
It is easily verified that this is an isomorphism of T} to S(p}’), which carries G; < T;

m
]
J

@.

to the group G(pY) = S(p7). (See [4]) We shall use this isomorphism to establish

the structure of T; and Gj.
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Remark 2. We should like to note the following remark of a computational
character. To find in concrete cases the maximal idempotents [e;] we proceed in
the following manner: Since [e;] = [p7a;], we have

pia; = Fw&aw (mod pi'... p¥ ... P
and — since (g;;m) =1 —

4

pi'a;

Hl

1 AEO& d ;
14 g.\

This congruence defines a; ABO& :Mv uniquely. Hence e; is uniquely determined
modulo m. . P
To find the components of any element [x] € S(m) in the decomposition (1) we

proceed as follows: Every [x] € S() can be uniquely written in the form

L m
[x]1=T1 | &+ ) — |- 3
i=1 Pj
where kj(x) is an integer satisfying 0 < k;(x) £ pj — 1. Since [eje, e = 0],
e; w” = [0}and :.“ N = [0] for i = j, we obtain by multiplying the brackets
py by D .

on the right: ) -

[x] =1 k() |:W_- €s€5...€, + ky(X) :M e,e5...€, + ... + k(X) m
w

€1€5...€6p.1 |-
ar .
1 123 b

Taking the last relation (mod p7) we get

x = kfx)

m .
€10-€j 181 (mod p¥).
b

This linear congruence defines k;(x) (mod p7) uniquely.

- 2.

For further purposes we mention the following known fact: If a semigroup S
with a unity element can be written as a direct product of subsemigroups S = S . S,
(S;, S, containing unity elements) and y is a semicharacter of S, then y induces
on §; and S, semicharacters Xy, X2 of Sy, S, respectively and if x = x; . X,
(x; €Sy, X, €8, x(x) = %1(x1) x2(x) holds. Conversely, if ¢, Y, are semicha-
racters of S; and S, and x = x; . X, (x;€S), then Y(x) = ¥,(x,) ¥r,(x,) is a semi-
character of S. (An explicit proof of this statement is given in a slightly other form
in [6], Theorem 5,1) ,

To describe the semicharacters. of S(m) it is sufficient to find the semicharacters
of each of the subsemigroups T;.
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We recall that by the unity semicharacter of a semigroup S we denote the function
which is identically I on S. The unity semicharacter of T; will be denoted by ¥,

Lemma 1. Let y be any semicharacter of T;, which is :S the unity semicharacter-
C ) of T;. Then for every [ble T; — G; we \Bﬁ. 2] =

Proof. We have necessarily ([e;]) = 0. For otherwise z [e;] = [e;] for every
[x] e T; would imply x([x]) . x(Ie;)) = x([e;D), hence x([x]) = 1 for every [x]e T
contrary to the assumption.

If [ble T; — G;, we have as above [b]Y = [e;], hence {y([])}" = x([e;]) =
therefore y([b]) =0, q.e.d.

If y is any semicharacter of 7}, x induces a semicharacter on the group G;. We-
have y([1)) = 1. For (1) = x([1}*) = x([1]) . x([1]) implies x([1]) {x((1]) — 1} =
hence either x([1]) = 0 or x({1]) = 1. The first possibility cannot occur since:
x([1D) = 0 would imply x([x]) = x([x]) x([1]) = O for every [x]e T;, contrary to
the definition of a semicharacter. By other words: y induces on G; a character of G;
in the usual sense (used in the theory of groups).

With respect to Lemma 1 we can say that if y is not the unity. semicharacter of T,
it is of the form: :

(o0 for [x]eT; ~ G,
x(x) = W([x;) for [x]eG,,

where  is a character of the group G;.
Conversely, 18t Gn a character of ﬁro group G; and define the function y by the:
statement:
0 for [x]leT; -G,
U({x;) for [x;]eG;.

We show that y is a semicharacter of T, i

xlxy) = x(xD . x(yD) )

for every couple [x;], [y;]€ T;. If both [x;], [y;] belong to G; the relation (4) holds
with respect to the multipliative property of the function y on G;. To prove our
statement it is sufficient to show that if at least one of the elements {x;1, [y} belongs
to T; — G; so does the prodict [x;y;]. (For then we have zeros on both sides of
the relation (4).) Let be [x;Je T, — G;, [y,]€ T;. It follows from the relation (2)-
proved above that there is an integer p([x;]) = 1 mcor that [x; 1D [e;]. But then.

,_m_”kg .tg”_w\.enkuc _H.x“ “—bax:v _H.w».Lu:uQ“c _”msu_ _”vﬁu_tcnabv _Hmu”_

(The Emn relation _m a consequence of the fact that [e;] is the zero element of T:)
The relation {[x;y;]}*™P = le;] implies [x;y]e T; — G;.
Summarily we ?oéa.

x([x;D) =
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Lemma 2. Every semicharacter y of the semigroup T; different from the unity
semicharacter of T; is of the form

0 Jor [x]leT; - G,,
Y([x) for [x]eGy,

and conversely. Hereby v is a character of the group G,.
Since the group G; has p} — p¥~' distinct characters, we conclude that 7; has
i — ¥~ RS a_mﬂan semicharacters (including the unity semicharacter xcvv

With respect to the fact mentioned at the beginning of this section we get the result:

xxD =

Theorem 2. The semigroup S(m) has exactly {] (1 + p} — p¥™") distinct semi-
i=1

characters.
3.

In the case m even we will take in the following always p, = 2.
To find all semicharacters of T; we have to distinguish two cases.

A. Suppose first that either p g. > 2 is an odd prime, or p} = 2, or p¥ = 4.

The group G; = 0=<k<p?, (k,p)=1}, being isomorphic to
pi* 1|

G(pF), is a cyclic group of oann o(p7). There exists therefore an element k =

such that [g]=|¢; + 5

— | is a generating element of G;. Hence to every
py

[x,]€ G, there is an uniquely determined integer p([x;]), 0 < o)) < o(p)
such that [x;] = FLQF:

Any character ¥ of G; is completely described by wnos::m the value y([g;].

2ni
Denote o; = oxmj. The semicharacters of T; different from the unity semi-
oLy
character y§” are determined by
([ = 0 for [x;]eT; -G,
- oG for [x;]eG,

A@ = _u Nu ] Sﬁﬁguvv

To be able to distinguish between the characters y%” and 15 we have to consider
the <mEo of xcv not only on [g;] but also on [¢;]. By Lemma 1 if NSATLV =1,
then y“([g,]) = 1. Hence:

Lemma 3a. If the order of T; is py and either p; is odd, or R: =2, or py =4,
a semicharacter 9 is 83,&2@@ given by E&Q&Sw NCVQPU and VSQWE with
the restriction that NSQva 1 implies REAWLV . The admissible values of

%) 2 o () 1
(gD are %m numbers 1, w;, o5, ..., 0 .



All characters of T; are schematically given by the table:

[e L g L
X8 1 1
NM... ) 1) o;
o 0 5
: (6] )
Wy | 0!

B. Suppose next that p; = 2 and «; = 3, i. e. pi' = 2" = 8. Consider the iso-

morphic image of Gy, i. e. G(2*"). It is well known that the group G(2*') is not cyclic,

a=1
but to every element {a) e G(2™) there is an integer t such that (@) = AAI 12 mﬂv

2
wn_:aw;. The characters ¢, of G(2™) are

determined by the values of y, on {(—1) and {5):

with 0 < 1 < 272 Denote w, = exp

(=1 <5
.\:, -1 o
¥, 1 wy
Y3 -1 SW
Vs 1 Sw
Yam—1_y -1 1
~\\Nn_ln 1 1
Consider now the isomorphjsm
S m m
e+ kP lec, ol k2N ec2n
1 Nn_ 1 / NE \ A v
k=1,3,5..,2" —1). Find integers z, and z,, 1 £z, <2 - [, 1 <z, £
< 2" — 1 such that z, MN_ = .L.Q:oa 2} and z, ,MN_‘ = 5(mod 2") and denote
- m - m’]
_”Wc“_ = 1€ it 21 Nﬁu 3 _HW~M =1€ + 2y Nn— 1

Then [g,), {g1] are € T, and they are the images of {— 1> and <5) in T,. We hav

the following v

Lemma 3b. If p; = 2 and py' = 8, then a semicharacter ¥ of T, is uniquely
determined by the values of ¥ on the elements [e,), (g, [g4]. Hereby ()]
takes the values 0 or 1, ¥°([g,]) takes the values +1 and x*Xlg,)) takes the values

: @ —2_q 2mi . . 1)
H.STSP ey @F , Where w{=exp |~.E||~1 , with the restriction that ¥ '([e,]) = 1

implies ¥ V(7o) = 1 V(2. = 1.

>

The following table indicates a complete set of characters of T:

“ {e,] HM& (g1]

xS 1 1 1
P 0 -1 o
P 0 1 ®
s A
Pruds 0 1 w?
i 0 -1 1
Tem—1 o 1 1

4.

Let now be m as above and decompose S(n7) into the direct product S(m) =
=T,.T,..... T,. If y is any character of T}, then y = y OB LA
a character of S(m). If the ¥ -s (for j = 1,2, ..., r) run independently through
all characters xm....v, Nm:u o xw.m%v., we get all characters of S(m).

Suppose first that either

, m=pips.mh - ®
or ) )
m = 2p3...prs : ©®
or

m = 4p%..py, T : | @)

and p,, p,, ..., pr are odd primes and o ;... > 0.
In this case every 1 depends on two ,,parameters” and with respect to the

foregoing considerations we can state the following E
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Theorem 3a. If m is an integer of the form (5), or (6), or (7), we get every semi-
character of S(m) by prescribing its values on

HNL, _”NLu _Hmnuu HNNU_w 4 g TL‘ _”N.L

Hereby x(le;]) takes the values 0 or 1, x([g;]) takes any of the values 1, w;, Sw.. vy

a 2ni
Sw?iv ~1, where w; = exp 1]1% ) , with the restriction that if for a fixed j we have
J
x(le;D = 1, we must prescribe also x([g;}) = 1.

Remark. In the case (6) x([g;]) = 1 (since w; = 1). In the case (7) x([g]) is
either 1, or —1 (since w, = —1).

In the case p; = 2 and &, = 3 the semicharacters of Ty depend on three ,,para-
meters® and we have:

Theorem 3b. Let be m = 2"p% ...p;", where o, = 3, ay05...a, > 0, and p,,

D3, ..., Dr are odd primes. Any semicharacter of S(m) is determined by prescribing
its values on

—‘.m.mu_v _”Ncuu _”qu_u _”NNH. _”WNHT “ees mm...._. _”N.L.
Hereby x(le) G=1,2,...,1) is either O or 1; x([go]) is either —1 or 1; x(Ig.]) is

ay—2_4 : 2mi .
one of the numbers 1, @y, ..., w3 , where 0y = oxwtmnrmlw Jor j= 2 gD
y a N i
is one of the numbers 1,m;, ew; cees Sw?b Lo ;= eXp lmw.ww , and the choice of the
o\py’

values of y is restricted by the requirement that if y([le;]) = 1, we have also x({go]) =
= x(lg.) = 1 and if for j = 2 x([e;]) = 1, we have also x([g}}) = 1.

5.

It is also possible to compute the values of y([x]) — in some sense — explicitly
in terms of the integer x. -

A. Suppose first that m = p{'p3...p", where pi' is either odd, or pi' = 2, or
i =4

Let y be a fixed chosen semicharacter of S(m). For j = 1,2, ..., r denote x([e/]) =
= u;, x({g) = Sw , Where y;, Sw are determined by y in accordance with Theorem 3a;
hence y; = 0 or 1, and if u; = 1, we have x([g;]) = 1. The semicharacter x induces
on 7 a semicharacter of T}, which we shall denote by .

By Theorem 1 every [x] € S(m) can be-written in the form

m.

[x] = | ex + ky(%) o || e + ko)

33

m .
—1.
P1

Pr

®)

x2

e, + k(x)
P2 o
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The numbers k(x), kz(x), --., k,(x) are uniquely determined by [x] and the requi-
rement 0 < kax) < pf — L.

If (k;(x), p;) = 1, we have [x;] ={¢; + ki(x) Mk 1€ G, and [x] = [} with
: J
0 < pi(x) = o(p7)-
If (ky(x), p;) = p;» we have [x;] = | ¢; + k{(x) Mw: eT; - G.
For j = 1,2, ..., r define the following wssamos“N
. 5.5 = wt\. « " m, (kix), pj) > 1,
w+ (=)0 if (k). p;) =1

If 4, = 1, we have @,(x) = 1 independently whether (k;x), p;) =1, or (k;), p;) >
> 1. If p; = 0, we have , .

0 it (k0 p) > 1,
egﬁ.&v = < b;0,5(x) m. \ﬂ Y1
@; if (k0 py) = 1.
. m
Hence &; takes onx the same value as xc ([x D for [x;]=] e; + k \Axv o . Therefore
: % J
2D = Py(x) - Do) . ... . D(x)- . ®

Since x defines k;(x) and p(x) uniquely, the function (9) can be considered as the
desired expression of y([x]) in terms of x.

B. Suppose now that m = 2%'p%...p}", where o, > 3and p,, ..., p, are odd primes.
Any [x] € SGn) can be again written in the form (8). If (k;(x),2) = 1, we have
m
2+ .
with 0 < 6(x) < 1 and 0 £ p,(x) < 272 If on the other hand (ky(%),2) = 2,
we have [x,]e T, — G,.

Let y be a fixed semicharacter of S(m). Denote

[x,] =1e; + ki(x) € G, and [x,] can be written in the form [gr® . [g ™

x(eD) = nq,s
g = (=D 0=b =L

2ni
Nﬁ— I|N\.w

NQWLJ = .Swn.v w,; = €Xp 06, < A

Define the following function

7

i
N

C(m it (ky(x), 2)
VO = 4y + (1= ) (1P i (i, 2)

I

(3!



m
X1
2

Then , takes on x the same value as y([x,]) on [x,] = | &; + k,(x) . Therefore

XD = ¥1(x) . Pr(x) . ... . B(x)

is the required explicit formula for y([x]) in terms of x.

6.

We illustrate the foregoing considerations on an example. We have to find all.

semicharacters of the semigroup S(360). . .

Since m = 2*.3% .5, there exist exactly [¢(8) + 1] [(9) + 1] [e(5) + 11 =175
distinct semicharacters. .

The maximal idempotents of S(360) are of the form [e,] = {[8a,], [e,] = [9a,],
[e5] Huﬂau_, 0 < a; <360, (a;,360) =1. The relation [8a,] = [64a2]. i.e. 84, =
= 64a; (mod 360) implies a; = 17, hence [e,] = [136). Analogously [e,] = [81],
[es] = [145].

We have further:

{136 + k,45] [0 < k, < 7} =

{1136], [181], [226}, [271], [316], [1], [46], [91]},
{[181], [271], (1], [911}, - ‘

{[81], [121], [161], [201], [241], [281], [321], [1], (411},
{[121], [161], [241], [281], [1], [41]},

{[145], [217], [289], (1], [731},

Gs = {[217], [289], [1], [73]}.

The group G, is isomorphic to G(8). This isomorphism is realized by the mapping
{136 + k; . 45) e Ty & (45k,) = (5k,> € G@8), k; = 1,3, 5, 7. The images of [181],
[271], [1], [91] € G, are successively (5), <7D, <1, {3) € G(8). Since [271] «{~1)
[181] <> <5), we may choose [g,] = [271], [2,] = [181] and all elements G, are
of the form [271%. 181")0% b, < 1,05 b, < 1.

Consider now the group G, and the isomorphism [81 + 40k,] € G, « {4k,) € G(9).
Since {5) = {(4.8) is a generating element of the group G(9), we may choose
[g2] = [81 + 8.40] = [41] as a generating element of the group G,.

Finally the isomorphism G; «+ G(5) realized by [145 + k4 .72]€ G; «» {2k;)> €
€ G(5) and the fact that {2) is a generating element of G(5) imply that [217] is a gene-
rating element of G5.

Hence any semicharacter y of S(360) is completely given by prescribing its
(admissible) values on the following elements:

T,

Il

o S H B
(I

[136], .qu:v [181]; [81], [41]; [145], [217].

2

Taking account to the restrictions mentioned in Theorems 3a and 3b, we get the
following table of all semicharacters of S(360). Hereby the integers b and ¢ run
independently over all integers satisfying the inequalities 0 = b<6 0 c<4d

) . The number of
[136] [271] [181] (81] [41] [143] [217) semicharacters
i .
i R N H
0 41 41| 0 expl 0 exp- 9
6 . 4
2nrib 2nic
1 1 1| 0 exp—p— 0 exp 24
6 4
) 2ni
0 +1  +1 1 1 0 exp M_m 16
0 +1 +1 0 exp Nﬁ.@;v 1 1 24
1 11 1 1 0 exp Nma 4
. i g 0 exp qu:u i 1 6
0 41 41 | 1 1 1 1 4
1 1 Lot 1 . .
m 175

Let now be, for instance, y the mnEmormnwoSn of $(360) defined by the following
values of x: :

136 7. 08y | B @O | (45 [217]

0 exp |M| . 2mi

—
—

|
_
x_~|__

We have to find x(100).
We use Remark 2 to establish the integres k, k,, k3 in the decompostion [100] =
= [136 + 45k} . [81 + 40k,] . [145 + 72k;]. We have 100 =k, .45.81. 145
(mod 8), hence k, = 4. Analogously k, = 7,k; = 0. Hence [100] = [316].[1] . [145]).
Since (k,,2) = 2, we have ¥,(100) = x([136}) = 1. Further since (k,,9) =1,
we have @,(100) = 1 and since (k3, 5) = 5, we have 9,(100) = 0. Hence x([100}) =
= 1,(100) . $,(100) . $,(100) = 0.
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NOJNYXAPAKTEPEl MYJITHIJANKATUBHON MOJVIPVIIIEI
KJIACCOB BBIYETOB (mod m)

borymmp IMapuzex u Mrepan Msapi
Pesome

IMonyxapaktepoM nouyrpynmbl S HA3pIBAETCA KOMIUIEKCHAS MYyNTHIUIMKATHBHAA (YHKIMS
OIpefesicHHAS Ha S U He PaBHA TOKACSCTBEHHO HYJIIO. ’ .
ITycte m> 1 — HaTypambHoe wuciao u S(m) — MyITHIVIMKATHBHAS WONYrpynna KIACCOB
BeraeToB (mod m). Henbro HacTOSMER CTATHH ABIETCA HAXOKACHUE BCEX MOJIyXapakTepos HoJly-

rpyonsl S(m). MeToxn nojlyYeHus BCeX IOMYXapakTepoB H3NMOXKEH B IPHBEICHHEIX BBIIE TEOpeMax
3a m 36. E
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