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SEMIGROUP COVERINGS OF GROUPS

By JAMES WIEGOLD, Manchester (England)

1. Introduction

This note arose out of a problem posed some years ago in this journal by Prof,
Stefan Schwarz in his paper [1] on semigroups satisfying certain generalisations
of the cancellation law. There it was found necessary to consider semigroups which
can be covered by pairwise disjoint proper subsemigroups all satisfying one of the
various cancellation laws — right, left, two-sided or a certain generalisation whose
precise nature does not concern us here — and the problem naturally arose as to
what structures are possible for such semigroups. The class formed by them is very
wide, and a complete characterisation seems to be a difficult undertaking; on the
other hand, Prof. Schwarz gave characterisations of commutative and of periodic
semigroups with these properties. This led to a determination of all abelian groups
which are unions of pairwise disjoint proper subsemigroups (all the cancellation
laws are then automatically satisfied): they are simply the abelian groups which
have elements of infinite order. This is certainly not valid in the domain of non-
abelian groups, and it is the aim of the present note to discuss the same problem,
together with others related to it, in this more general situation.

The author’s first contact with the subject was in the New Scottish Book, where
he misread the problem to read: what groups can be covered by subsemigroups none
of which is a subgroup? It turns out that this class of groups is relevant, in that
it properly contains the class just mentioned. Let us define four group-theoretical
properties, to be denoted by German capitals — for details see § 2:

Z: G is the union of subsemigroups none of which is a subgroup;

&t G has at least one aperiodic homomorphic image;

D: G is the union of pairwise disjoint proper subsemigroups;

&: G is not periodic, and has the property that whenever two elements ¢ and b
have positive powers in common, then ab and a also have positive powers in common.
. Obviously, periodic groups satisfy none of these properties, but on the other
hand, there exist (§ 2) non-periodic groups which also satisfy none of them. Any
group possessing a property denoted by R is called a -group, and the class of all
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B-groups is denoted by [$]. One of our main results is the following chain of in-

clusions:
2= [ =2[T>[6)

and that they remain valid when all groups considered are metabelian. It seems
likely that the middle inclusion can be strengthened to a strict one, but I have been
unable to confirm this point. For many groups the four properties coincide; for
instance every non-periodic group in which all the two-generator subgroups are
nilpotent or free (this is meant to include the possibility of two-generator free and
two-generator nilpotent non-abelian subgroups in one and the same group) is an
©-group.

Apart from the partial characterisation given by this last-mentioned fact, ﬂrn
results are of a sketchy nature, usually taking the form of conditions sufficient (but
not necessary) or necessary (but not sufficient) that a group satisfy one or other
property. A simple though far-reaching result — and one which perhaps accounts
for some of the difficulties encountered — is that if 9 denotes one of the properties
%, S, T, then any group which can be mapped homomorphically onto a 9-group
is likewise a D-group. It means, of course, that the classes are exceedingly wide,
and for instance that any group can be embedded in a group satisfying all three
properties T, J, D simultaneously. .

I thank Dr M. F. Newman for some useful comments.

2. Preliminaries

2.1. Groups will be written multiplicatively, with 1 standing for the unit element
and E for the unit subgroup of all groups occurring. If all elements of the group G
are of finite order, we say that G is periodic; if G # E and only the unit element has
finite order, that G is aperiodic; while non-periodic is to imply that some element
has infinite order. If g, A are elements of G, the transform h='gh of g by h is denoted
by g", and the commutator g~ 1h~'gh by [g, h]. The n-fold commutator [x;, X3, .-, X,
is defined inductively by the rule [xy, X3, s X = [[X1, X3, <o X, 1), X, ]; that is,
commutators are left-normed. It is easy to see that for any group elements g, # and
any integer n, , :

(8" = (g"" ‘ @)

2.2. 1f A and B are subsets of the group G, the symbol [4, B] denotes the subgroup
of G generated by all commutators of the form [a, b], with ae 4 and be B. The
lower central series of G is

G = FAQV 279, 2...2706G) 2.

where 7,.(0) = [G, 1.(G)] for n 2 0; G is nilpotent of class n if the lower central
series terminates in E after a finite number of steps, and n is the first integer for
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which 7,(G) = E. In this case y,_(G) is contained in the centre of G, and as a coroll-
ary we conclude by an easy induction argument on k that

[k, X2, vos Xu] = [X10 %5, s X ] =[xy, X2, ooy X6 2.2

for any integer k and any elements X, x,, ..., X, of a nilpotent group of class n.

We shall need the following facts about the lower central series and nilpotent
groups. The first two are very simple and well-known, the others, as far as I know,
new:

2.3. [2, lemma 1.7] Suppose that the group G is generated by a subset X of its
elements. Then, for each n = 1, y,(G) is generated by all transforms by elements of G
of all commutators of the form [x,, X4, ..., X, ], where x,e X fori = 1,2, ...,n + L.

24. [2, lemma 1.2] For any normal subgroup N of the group G and any integer
n 2 0, y(G/N) = 7,(G)N/N.

Lemma 2.5. Let G be a nilpotent group generated by two elements which have
commuting non-zero powers. Then y,(G) is finite.

Proof. We proceed by induction on the nilpotency class of G. For class 1 the
result is trivial, since in that case y,(G) is the unit group. Suppose then that we
know the result for ::voﬁm: groups of class less than n, and let G be nilpotent of
class n and generated by two elements a, b such that [a°, =1 for some non-zero
integers a, f. Consider the factor-group G/y,-,(G). By 2.4, it is nilpotent of class
n — 1, and so by the inductive hypothesis its derived group y,(G)/y,-(G) is finite.
It remains now to show that the subgroup y,.,(G) is finite. By 2.1, it is generated
by all transforms of all commutators of the form [x,, x,, ..., x,}, where each argu-
ment is a or b; but these elements are all central, so that we have shown that y,_,(G)
is a finitely generated abelian group. Next, equations 2.2 tell us that each of these
generators is of finite order, since

1=a’ b, x5, ..., %) = [a, b, x5, ..Jxa,“_&.

Oosmoncniqe._r%@,mnaarmnmmoafavlmmiﬁ.,_,Emooaloﬂnmgnmnooﬁoﬁ.
the lemma. :

. It may be remarked that the conclusion of lemma 2.5 holds for any nilpotent
group generated by finitely many elements with commuting non-zero powers.

Lemma 2.6. If a nilpotent group G is generated by two elements a, b which have
positive powers in common, then ab and a also have positive powers in common.

Proof. We again proceed by induction on the nilpotency class of G: when the
class is 1, @ and b commute so that the result is immediate. Suppose that we know
the result for nilpotent groups of class less than z, and let G be nilpotent of class n
and generated by two elements a, b such that ¢" = b for some positive integers
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the factor-group Q\FI_A@ then for some positive integers p, ¢ we have

(a1b,)” = af.

This leads to an equation of the form
(ab)’ = a"g,

for some g € y,_,(G). Now g is central in G and, by the previous _o::dm has finite
order; hence, for some t = 0,

(ab)™ = a”*g" = ",

which completes the induction and the proof of the lemma.

Definitions and results on free groups and free products of groups are to be
found in [3, Volume 2].

Group-theoretical properties will be denoted by capital German letters; if G
satisfies property %, we say that G is a P- -group, and denote the class of all such
groups by [B]. A group is said to be locally-R if every finitely generated subgroup
has property %, this being more stringent than notion associated with ,local systems*
of subgroups (see for instance [3]). We shall next define in more detail the four
classes of groups mentioned in the introduction, and obtain some of En_n more
elementary properties.

If G is a group, by a 1rue subsemigroup of G we mean a subsemigroup which
is not a subgroup — that is, one which contains some element but not its inverse,
Clearly, a subsemigroup consisting of elements of finite order cannot be true, so
that in particular periodic groups have no true subsemigroups. The group G is said
to satisfy property X if it can be covered by — in other words, is the set-theoretical
union of — true subsemigroups. The remark just made shows that a Z-group must
be non-periodic; however, not all non-periodic groups have the property I:

Example 2.7. Let G be the infinite dihedral group generated by two elements
a, b with the defining -relations a> = #% = 1. It is easy to see that gb has infinite
order, and that only powers of this element can have infinite order. We shall show
that the only mccmna_mnomﬁw of G which contain the element a are subgroups of G.
To 2:: end, let S be such a subsemigroup. Then if g & S has finite order k, the inverse

"' also lies in S; while if g € .w has infinite order, then g = (ab)™ for some integer m,
ms& S contains

n?vva..a = Amnvs_w .?SJ.: =g!

This means that S is a group, as required. o
In fact the same reasoning shows that no splitiing extension Ammo for Ema.nna 3D

of an .abelian group 4 by a cycle of order 2 inducing the inverting automorphism
of A can be a T-group.
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A proper subsemigroup of a group is one which is non-empty and strictly smaller
than the group; G is said to satisfy property D if it can be covered by pairwise dis-
joint proper subsemigroups. This property is more restrictive than the one just
mentioned, as we shall see in the next section. The following result of Schwarz
characterises all abelian D-groups:

2.8. 1, Veta 4.2.] A necessary and sufficient condition that an abelian group be
a D-group is that it contain elements of infinite order.

If a, b are elements of a group G, then following Schwarz [1] we say that a and b
are equivalent if there exist positive integers «, f such that a* = °. This is clearly
an equivalence relation on G, and we shall denote the equivalence class containing
the element a by 7.

Lemma 2.9. If G = U S, is a decomposition of the group G into the union of pair-

e
wise disjoint subsemigroups S;, and a is an arbitrary element of the subsemigroup S,,
then the whole equivalence class T, of a is contained in S,,.

Proof. Suppose that o = b* for some positive integers «, f. Then b lies in some
component S, of the decomposition, and the disjointness condition ensures that
S, = S,.

If G is a group which contains at least one element of infinite order, and in which
all the equivalence classes T, are subsemigroups of G, then we say that G has pro-
perty: . Since the elements of finite order form an equivalence class, this is a proper
subsemigroup — and therefore normal subgroup — so that in fact any &-group is
also a ®-group; they form an extensive class, as we shall see later.

Next we define by transfinite induction the periodic series of an arbitrary group G,

70(G) € 1,(G) < ... @ (G) =

as follows. The first term 74(G) is to be the unit subgroup, while if 4 is a limit ordinal,
7,(G) is to be the union of all n,(G) with < 4. If 4 has an immediate predecessor y,
7,(G) is the subgroup of G generated by all elements which have finite order modulo
7,(G). Each term of the series is normal, since the union of normal subgroups is
normal, and if g” lies in the normal subgroup n,(G). for some element .g and some

integer n, then by 2.1,
(&) = (&) enlG)

H.Oa mngqmd\ ae G. The limit n.AQv of the vo:o&o series of G is called the wm&a
of G. From the definition it follows that O\a.AS is mvn:o&o if ?A@ ¢ G, so that
we.have-the following result in one direction:

bm:::u 2.10. The group G has an nﬁm:o&a \Swze\:e%\:n :xnwm if and only if
- Proof. We show that the ».mnao?m‘_.mcvd.\z is apefiodic, 90:.2.. 2 7G) = of
what is the same-thing; that’' N-contains-all -terms -of the periodic¢ series-of :G: It is
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clear that n,(G) < N. Suppose we know that for every ordinal 4 < A that 7,(G) = N.
If A is a limit ordinal, then obviously #n,(G) = N. If on the other hand 4 = u + 1
then n,(G) is generated by elements which have finite order modulo n,(G). Con-
sequently if 7,(G) were not contained in N there would be elements of non-trivial
finite order in the factor-group G/N, in contradiction to the hypotheses. Hence
7(G) = N < G, and we have the result.

Lemma 2.10 shows that G/n.(G) is the unique maximal aperiodic homomorphic
image of G, if such a homomorphic image exists. Groups which have aperiodic
homomorphic images will be called $-groups; they form a class intermediate be-
tween [T] and [D].

3. Main results

All the results to be proved in this section are based on the following simple
theorem.

Theorem 3.1. If' 9 stands for one of the properties X, D, &, then any group which
can be mapped homomorphically onto a 9-group is likewise a 9-group.

Proof. For the property  the proof is immediate. Suppose next that G = U §;
is a decomposition of the ¥-group G into the union of true subsemigroups .wtmwhba
that ¢ is 2 homomorphism of the group H onto G. Then the complete inverse image T
of S; under ¢ is clearly a subsemigroup of H, and the 7, together cover H. Finally,
each T, is a true subsemigroup of H, since a homomorphic image of a subgroup is
a subgroup.

The proof for the property ® follows along precisely similar lines.

However, the property & is not preserved in this way. To see this it is sufficient
to observe that the elements of finite order in an &-group form a subgroup, and
that if H is any group where the elements of finite order do not form a subgroup,
then the direct product G x H is not an &-group. Again, none of the properties
are preserved under the operations of taking homomorphic images — as we shall
see, the infinite cycle mmﬁww@pnm all four properties, but none of its proper homomorphic
images has any one of them. ;

Next we have some lemmas which tell us something about possible structure
theorems for the various classes of groups considered, but not much; they usually
take the form of sufficient conditions which are not also necessary.

Lemma 3.2. If every element of finite order in the group G is contained in some true
subsemigroup, then G is a Z-group.

Proof. Clearly, every element of infinite order is contained in a true subsemigroup,
namely that consisting of its positive powers.

Corollary 3.3. Every aperiodic group is a -group, so that every S-group is a I-group.

-

Lemma 3.4. If every element of finite order in the group G commures with some
element of infinite order, then G is a Z-group.

Proof. Suppose that the element a of finite order in G commutes with the ele-
ment b of infinite order. Then the subset consisting of all elements of the form ab’,
where o is an arbitrary integer and f§ an arbitrary non-negative integer, is a true
subsemigroup containing a. That it is a subsemigroup, is obvious; that it is true
follows from the remark that b~ ' cannot be of the form a®b?, for non-negative .
Lemma 3.2 now applies to give the result.

Corollary 3.5. Every group can be embedded in a group which satisfies the three
properties T, S, D simultaneously.

Proof. Let A be an infinite cyclic group. Then A is clearly an J-group; by 2.8 it
is a ®-group; and by lemma 3.2 it is a ¥-group. Thus if G is our given group, theorem
3.1 tells us that the direct product G x 4 will suffice as an embedding.

Lemma 3.4 provides a sufficient condition which is not also necessary. For in-
stance, in the free product of an infinite cyclic group with a cyclic group of order 2,
the generator of the finite cycle commutes only with itself and with the unit element;
however, the free product can be mapped homomorphically onto the infinite cycle.

Lastly on the subject of Z-groups:

Lemma 3.6. Any group which can’ be expressed as the set-theoretical union of
E-groups is itself a I-group.

The proof is obvious, and is omitted. These few results together display the width
of the class [%], and indicate that a characterisation of all T-groups will be far from
simple. Possibly easier (since less numerous) are the ®-groups, to which we now
turn attention: but even here we come across difficulties arising presumably out of
the width of the class, and out of the very different structures that T-groups may
possess.

Lemma 3.7. Let G = U S, be any decomposition of the group G into the union

ie
of pairwise disjoint subsemigroups. Then the peak n.(G) of G is contained in that
subsemigroup S, which contains the unit element.

Proof. As usual, n4(G) < S,, and we assume inductively that for all ordinals
pu <A, n(G) < S,. The case of a limit ordinal is again trivial, so we assume that
A=y + 1, and consider an arbitrary element g of 7,(G). This element can be
expressed as a product g = g,g, --- £,, where each g; has a positive power in 7,(G),
that is, in S,; consequently, owing to the disjointness of the S;, each g; must also
lie in S,, so that ge S, as required.

Corollary 3.8. Every ®-group is an J-group.

Proof. The lemma shows that the peak of G is contained in a proper subsemi-
group, so that it is a proper subgroup of G.



We have now established the following inclusions:

[F=2R1=21(% =6l

It is not hard to show that the first and last inclusions may be replaced by strict
inclusions, even if we consider only metabelian groups.*

Example 3.9. Let G be the direct product of an infinite cyclic group with an
infinite dihedral group. Then G is metabelian, and, since it can be mapped homo-
morphically onto the infinite cycle, it is a D-group. However, it is not an &-group
since the elements of finite order do not form a subgroup.

Example 3.10. Let G be the group generated by 3 elements a, b, ¢ subject to
the 6 defining relations

= b® =

I

[a,b,¢] =[b,c,a] =[c,a,b] =

We first of all observe that G = n,(G) and therefore that G is not an 3-group. How-
ever, we shall show that it is a metabelian %-group:

() G is metabelian. By 2.3, y,(G) is generated by the transforms of the commutators
[a, b], {a, c], and [b, c]; but the relations

[a, 6] =[0,6]",  [0b]P=[ab]" [ab] = [ab]

and the similar. ones for the other two commutators show that 7,(G) is generated
by the three commutators themselves. Next, the relations

[a, 6] V= [a, bT*** = ([a, 8] 7)™ = ([, b]*)** = [a, 8]
and others like them show that y,(G) is abelian.
(ii) v,(G) is free abelian on the generators [a, bl, {a, c], [b, cl. For this we take an

auxiliary infinite dihedral group H generated by two elements d, /* subject to the
momﬁzm relations d” = \ = 1, and suppose that

[a, 51a, <J[b. ' =
is a relation between the generators. of 7,(G). Then, by von Dyck’s Theorem (see [3]),
the mapping ¢ given by ap = d, bo = f, n.s = I extends to a homomorphism of G
onto H. The given n&mm.ad @wooanm d,f17 =1, and this Qoﬁq means that 4 = 0.
Similarly we show that t =0 and the _.amc_ﬁ mo:oim.

(iii) mcm@. element of \?Rm S.&m‘ in Q 855:“& with an element of :558 ew&mw
,.8 that Gis a M..w::% It is 3:»50 to check that Q\ﬁ R@ is n_mBosﬁmQ abelian of
order 8 mza that we may ‘choose the set ¥ = {1, a, b, c, ab, ac, be, abc} as a set
of coset representatives of G modulo 1.6, wo that every element of G is‘of the
form xv for some x € y,(G) and some v € V. We look for the elements Om finite order.

(I) v = 1. Here only the unit element has finite order.

() v =a, b, or c. Obviously we may take v=aas Q?o& Zoé the m_o_.:na xa

'

* That is, groups with abelian derived groups. :
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has finite order if and only if its square does; but (xa)* = xx" € y,(G) and this has
finite order if and only if x* = x~*. Computation shows that only elements of the
form x = [a, b]* [a, c]" have this property, and then of course the element [b, c]
commutes with xa. .

(IIl) v = ab, ac, or be. This time we take v = ab as typical. Here

(xab)* = xabxab = xx"[a, b].

22%1. olements in this

It is easy to see now that (xab)® must be of the form [a, b]
category thus have infinite order and do not concern us.

(IV) v = abe. Again it turns out that elements of the form xabc are of infinite
order. -

This completes the example.

It is likely that there exists a group generated by elements of finite order and yet
having elements of infinite order in its centre, but I have been unable to construct
one. Such a group would of course be a T-group without being an J-group; a can-

didate is the group generated by two elements a, b subject to the relations .
=b*=1, (ab)*=(ba)".

The element (ab)* is nonmEE central, and I can see no reason why it mro:E have
finite order. !

The last remaining inclusion is more difficult, and in fact I have been unable to
decide whether there exists an S-group which is not also a T-group. The existence
of such a group would entail the existence of an aperiodic group with the same
property — every homomorphic image of a non-®-group is itself non-D. It seems
very likely that such groups exist, and I would conjecture that there exist positive
integers m, n, $, Ay, fy, .. »2 U, such that the group K generated by two elements
a, b with the defining _,.n_mnoum

=b", m»éfn?wE catbPe =1

is mmn:o%o 028.55\ K is non-®; mOn in any decomposition K = Cﬁ% of X into

ﬁrn E:o: Om aéo:: mccmoEHmnocvm a and b lie in the same subsemigroup S, o:
moooca of Qo a&m:os a" = b iE_o the third relation _Bv__nm that ™" and b~
lie in S so that in fact S = NA I x:oi Om no method Om ﬁm:sm Sragnn Kis w@o:oa_o
or not.

In any case we have established the following theorem, in which the letter It
denotes the property of being Eaﬁcomm?,

.H__oc_.aE w : §m Qa&.& HM_, m& HQ, m@_ ,S:S\ the SQ&EE

. L

| [3] > (3 2 [9] > (€], R
(3] ] o E:%TEiﬁ,u@:%_‘

U\IU



Finally we come to an extension of Schwarz’s theorem 2.8 to a much wider class
of groups. We say that G has property % if it is not periodic, and if every two-generator
subgroup is either nilpotent or free.

Theorem 3.12. Every X-group is an ©-group.

Proof. Let G be any group satisfying property %; then we have to show that

every equivalence class T, is a subsemigroup of G. To this end let b, ¢ be equivalent -

to the element g, so that b and ¢ are equivalent and have positive powers in common.

If now b and ¢ together generate a nilpotent subgroup, then lemma 2.6 tells us that

be and b have positive powers in common, and hence that bc € T,. Otherwise b and ¢
generate a free subgroup. In that case the subgroup must have rank not more than 2,
being generated by 2 elements; it cannot have rank exactly 2, since b and ¢ are
patently not free generators; hence it is of rank 1, and b and ¢ must be powers of
one and the same element. Thus again bc € T,, and in all cases 7, is a subsemigroup
of G.

Corollary 3.13. The various classes of groups considered satisfy the equalities
(% 0 (2] = [¥] n [3] = [8]  [D] = [%] » 6] = [%],

fn particular: a locally nilpotent group can be covered by hmh.;%m disjoint proper
subsemigroups if and only if it contains elements of infinite order.
Another corollary, to the proof this time, is the following:

Corollary 3.14. Every non-trivial locally free group. is the union of pairwise disjoint
proper commutative subsemigroups.

Proof. If two elements of a locally free group have positive powers in common
they must commute,

Theorem 3.12 is most useful as a source of counterexamples. As an instance of
its use we begin with the observation that any group G for which the factor-group
G/y,(G) is non-periodic has property D, and ask whether the converse is also true.
The answer is no, for B. H. Neumann gives in [4] an example of a locally free group F
which coincides with its derived .group. This means, of course, that we -can make
a T-group in €Eor.ummmrmmoﬁon.mmo=u to the derived group has any wno.wmmmm:ma
(abelian) structure: for instdnce if A is an abelian group, the direct product A x F = H
has property ®, and yet'H/y (H) is isomorphic with A.
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) MMOKPBITHUE I'PYIINO HNOJYIPYIIIIAMH
Ixermc Yaiironn

Pe3iome

ByaeM rosoputsk, 4TO rpynna G YAOBHETBOP :€T COOTBETCTBCHHO YCIOBUAM: }
. ecnu G — 0GBLeAWHCHAE YACTHYHBIX [OJNOJYTPYNI, CPENM KOTOPHIX HET HM OFHOU rpynmbl;
: ecniu G UMeeT XOTs Obl ONMH aNEpHOAMYECKUil ToMOMODGHBI 06pas;
: ecmt G — 0ObeUHEHHE MOMAPHO HENEPeCceKatonMRCa COOCTBEHHBIX TOMONYIPYIHT;
: ecnu G He SABJIACTCA NEPHOAUYeckoil rpynmol, u a™ = b" (a, b € G, m, n — BaTypanbHBIC YHCHA)
BiiedeT 3a coboit a* = (ab)' E.S HEXOTODBIX s, . .

Kiacc rpynm, yaOBIETBOPsIOIMX yoiaopmio B o6o3Hauum 3uakoM (§). B Hacrosmel crathe

pokassBaerca: ()2 2(T) (). Us pe3ynbTaTOB CTATBU CHEAYIOT HEKOTOphie 06o6meHHs

Pe3yiIbTaTOB CTaThi {1}, B XOTOPOH M3YYamuCh TPYNMBI, YAOBIETBOPSIOLEME YCIOBHIO D).

[GRZELI
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