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SOME INEQUALITIES FOR THE SPECTRUM
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Introduction. It is the purpose of the present paper to prove several
results which enable us to associate with every matrix a region of the complex
plane which contains the spectrum of the matrix considered. All known results
of this type consist in formulas which use absolute values of the elements of
the given matrix (see below). In distinction to these theorems, our results are

based on the use of a norm of the whole aob-&@mow& part of the matrix. Our

results are valid for a fairly wide range of norms, including especially all
l,-norms.

Further, the results of the present paper are proved for matrices partitioned
into blocks and make clear the different role played by the diagonal and nondia-
gonal blocks.

The paper is divided into eight sections. In the first one, some auxiliary results
and definitions are collected. The second and third paragraph contain sufficient
conditions for the regularity of a matrix. In gections four and five, these condi-
tions are applied to matrices 1E — A to obtain inequalities for the proper
values of 4. In the sixth section we apply tensor products of linear spaces to
obtain some auxiliagy, inequalities.

The seventh and eighth sections contain several corollaries of the main
results in the most important special cases.

The starting point of all previous investigations of this type was the result
of Hadamard on matrices  with “‘dominant diagonal elements” stating that
a matrix (ay) is regular if | a;; | > M |a; | foreachs. Applied to the matrix AE—A4

Exi ,
this yields the fact that the whole spectrum of 4 is contained in the union of
the “Gershgorin circles” |a; — 4| = > | ay |- There is an extensive literature

ki
on questions of this type; a good bibliography may be found in the monograph
of Householder [4]. As for norms of matrices and tensor product, the reader may
consult [1], [2] and [3]. i
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1. Notations and lemmas

Let X be the linear space of all vectors » with complex coordinates &y, . . -, Lu-
We denote by G the set of all real functions g defined on X which fulfil the

following conditions:

(1) gl + 22) = g(zy) + g(x,) for all z;, z,€ X

(2) g(Az) = | 2 | g(z) for all z€ X and every complex number A

(3) g(x) = 0 implies & = 0.

The functions g € G are called norms on X. To every norm g € G there corres-

ponds an associated norm of n-rowed square-matrices as follows: for such
a matrix
g{4) = sup ¢(42).

z€X
glz) £1

Tt is easy to verify that this matrix norm satisfies the relations

g(A + B) = g(4) + g(B).

g(AB) = g(4) 9(B),

g(r4) = | 4] g(4)
for any matrices 4, B and complex numbers 1.
* We shall denote by N the set 1,2,..., n} With every subset K CN we
associate a projector P(K) in X transforming a vector ¥ with coordinates x;

into the vector y with the coordinates y, = «; for ie K and y; =0 for j non € K.
Definition. Let L denote the subset of those norms ge@ which fulfil the fol-

lowing conditions:
(L) K C N, theng(P(K)) =1;
(L) HK,,....K isa partition of N and P,=P(K),i=1,....7 then

.iM

P.AP)) < max g(PAP)
1 i

for every matrix A4; o
(Ly) Let KCN, P= P(K),Q = P(N-— K);
if A is a matrix with PAP = 0, then ;
g(PAQ + QA4P) = g(A).

(1,1) Let geG be a morm which: fulfills (L) and the following condition:

(Ly If KcN,P=PK) &= P(N — K), then g(4) < max {g(PAQ),
g(QAP)} for every matriz A satisfying PAP =QAQ = 0.
Then g has the property (Ly). :
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Proof. Suppose that a matrix 4 fulfills PAP = 0. Let us put B = 4 —
—QAQ. It follows that PBP = QB =0, PBQ = PAQ, QBP = QAP;
PAQ -+ QAP = B. Assuming (L,), we see that g(PAQ + QAP) = g(B) =

< max {g(PBQ), g(@BP)} = max {g(PAQ),9(QAP)} <g(A);the last inequality
is a consequence of (L,). This proves (L;).

(1,2) If = ts a vector with coordinates x,, . . ., %,, put go(z) = max | z; | and

- 1
Jo(X) = AM | z; _% for p = 1. Then go€ L and g, € L.

K3

Proof. It isa wellknown fact that g.(4) = max M | @, | for every matrix A.
: P :

Using this expression, the conditions (L) may be verified immediately. Now
let p = 1. (I;) and (L,) being evident, it is sufficient according to (1,1) to
prove (L,).

Let K C N, P = P(K), Q = P(N — K),
and let 4 be a matrix with PAP = QAQ = 0. Is is easy to see that

WPy} + 9@ = [90,)(Y)]

for every vector y € X. From this fact and from P? = P, Q2 — Q it follows that,
for every vector z€ X,

[9p)(A2)]P = [9,,)(PAZ)) + [g,(Q42)]F =
= [gp(PAP + Q) 2)]? + (9, QA (P + @) 2)]* =
= [9p(PAQ)] + [9,(QAPZ)}P <
= [gp(PAQ)Y [g(@%)] + [gp(@AP)]’ [gep(P)]? <
= ([90)(@2)) + [9)(P)]” max {[g,(PAQ)D, [g(QAP)IP} =
= [9»(®)]? max m@.@vﬁv AT, [9,»(Q4P))}.

Hence

Q@Eﬁ. = J(2) e {96(PAQ), 9,(QAP)},

so that g, (4) < max {9 PAQ), g(@AP)}. The proof is complete.

It will be convenient t6 introduce some further notations and conventions,
Let KCNand P = P(K)and put Z = PX. Let ge L and let T be a linear ope-
rator which transforms Z into itself. We intend to show that the norm of 7,
associated with g on Z, is equal to the norm of TP, associated with g on X.
To see that, let us denote by ¢, the norm induced on Z by g. The associated norm
9.(T") is equal to

zeZ

9:(T) == sup g(Tz) = sup g(TPz) = i 4 g(TPz) = g(TP).
gDz gm=1 =1
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Conversely, »
P) = TPzx) = su TPx) <
g(T'P) Mumﬂ g( ) %vm_ g.(
= ¢g,(T) sup 9:1(Pz) = g:(T) 9(P) = g.(T).
glo=

Thus g,(T) = ¢g(T'P). It will lead to no misunderstanding we if agree to
write g(T) instead of g,(T). .

Finally, if B is a matrix, we define §(P;B) = 0 if PBP is singular on Z,
§(P; By = [g(W)]* if PBP isa regular operator on Z and W is its inverse
operator on Z. For P = E we write simply §(B) instead of g(; B). It is easy to
verify that

. g{Bx)
: =inf %=-..
9(P; B) werx, 9(®)
40

2. A regularity condition for a matrix
In this paragraph we derive a generalization of the well known Hadamard
regularity condition for matrices with dominant principal diagonal.

(2,1) Theorem. Let A be a matriz, K,,..., K, a partition of N, P;= P(K,).

Let us denote by B the matriz B=A4 — M
i=1

fulfilling conditions (L,) and (Ly). Let (P, A) > g(B) fori =1,...,7. Then A
is reqular.

P, AP; and let g be a norm g € G

Proof. Let us put B = M _\ES\L P, W= M [g(W)]-* W.P;,, where W,
. i=1 i=1

are operators on P, X, inverse to P,AP;; the operators W, exist since §(P;; 4) >
~ 0. According to (L;) and (L,), we have g(R) < max _\Qﬁﬁ.v and g(W)= 1.

Now, RAR = EM PAP, + B)R =) g(W,) PAP, + EBR. Tt is easy to
1 i=1

i=1

¥
see that the matrices M g(W,) P,AP; and W are inverse to each other. Con-

i=1

sequently, RAR = AMQAS\LN&N.V (E + WRBR). Butg(WRBR)< g(EBR)=
. g(B) s e
= @E:NﬁmvMﬁmvmﬁ@xﬁ:ﬁ.vﬂ % < 1, so that the series &Wm is

convergent for H = —WRBR to the matrix (E + WRBR)'. Hence RAR is
regular, and so is 4.
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3. Another regularity condition for a matrix

The results of the present paragraph are based on some inequalites for norms
of matrices. These inequalities will enable us to prove a general criterion for
the regularity of a matrix.

(3,1) Let KCN,P=PK), Q= P(N —K). Let Abea matriz with PAP =
=0; ifc =0 and T =0, put B = o (PAQ + QAP) + 1QAQ. Then g(B) =
< max (o, 7) g(4) for every normg-€ L.

Proof. Let us put £ = min (o, 7). Since 4 = (P + Q) A(P + Q) = PAQ +
4 QAP -+ QAQ, we have B = (s —¢&) (P4Q + Q4P) + (r —£)Q4Q + &d.
According to (L) and (L), both g(QAQ) = g(4) and g(PAQ + QAP) < g(4)
are fulfilled, so that g(B) = gllo — &) (PAQ + QAP) + (v —£) QAQ + EA] =
< [(6 — &) + (x — &) + &l g(4) = max (0, 7) g(A).

(3,2) Let K, - - - K, be a partition of N, P, = P(K)), and let o, = x; =
> .= =0 Let Abeamalriz with P,AP, = 0. Then for every normg el

g M 5 PAP) < sazag(A).

i, j=1

Proof. Let us put B = M x;v PiAP;. Forr = 1 or %y = 0 we have B =0
ii=l
and the assertion is valid. Thus, let x, > 0. We put H = M ao; R AR; where
ij=2

R,= P, + Py, R,=P;....R = P,. It is easy to verify that P,HP;=0and
B = ZL(PHQ, + QP + QHG,
2
iw@n@ Q,=Py+...+P.Tt follows from (3,1) that

%wmaa A,@\f ; aEnBaE.
Ky Ky .

Now H= b\_b ﬁ&mwm..@ = M o R;, so that g(D) = «xe @oooa.mcm.eo (L3).

i=2

Hence g(H) < g¥(D) g(4) and -

g(B) = "Lg(H) <2 u3g(4) = o1xs 9(A)-

1
&g &g -
This completes the proof.
(33) Let K,,..., K, be a partition of N, P,= P(K;)). Let A be a

matric with P,AP; =0 for i =12,...7, le¢ D be a matriz with D' =
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.sL.
=]

= > P.DP;. Then g(DAD) = max {g(P.DP,) nﬁ&bﬁ.x g(A) for every morm
o
L.

i
~
<

oy

Proof. If D = 0, the assertion is true. Let D == 0, so that P,.DP, == 0 for at

least one f£. Let us put x; = g{P;DP,) and o; = W! for x; =0, o; =0 for
i ;

amuo.?irmapixﬁuMq,ﬁ.bwrémgﬁﬁM;ZEH8&:;
. i=1
easy to verify that
DAD = M (3 xio;P:AP) M.
%]

From (3,2) it follows that

g(DAD) ¢ AM Bmxku@.hmw.v < max (x%;) g(4).
b o
which completes the proof.

(3,4) Theorem. Let r = 2, let Ky, ..., K, be a partition. of N, P; = P(K,).

Let us denote, for a given matriz A, B = A {M P.AP,. Let ge L and suppose
: : i=1

that
g(Ps; Ay g(P;; A) > g*(B)

for each pair i, (1,j =1,...7), % & j. Then A is regular.
Proof. Since §(P,; 4) > 0, it follows that P,AP; is regular on P.X for
i=1,...,r Letus denote by W, the operator on P.X, inverse to PAP,.

Put R= ) VoW P, W= 2 wav W,P,. According to (L,) and (L,), we
s.H~ i=1 AN -

have g(W) < 1. In the same way as in the proof of (2,1),

EmuiMﬁmﬁanvmu M aﬁvw&w]rwgu
=1 i=1
— (> (W) P, AP) (B -+ WEBR).

=1

From (2,3) we get g(WREBR) < Qﬁwwmv =

e l_ QEV
S max VoW Vo) 9B) = ez 4) sy <"

Giyiak]

Hence RAR, as well as 4, is regular.
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4. The spectrum of a matrix

In this section, we shall use the criterion of regularity given in (2,1) to
obtain an estimate of the spectrum of a matrix.

4,1) Let K, ..., K, be a partition of N, P;= P(K,). Let A be a matriz,
B=A— Y P,AP, Lel g be a norm g€ G which fulfills the conditions (Ly) and
. i=1 :
(L,). Let us denote by M; (6=1,2,...,7) the region-of those complex numbers
2, for which
g(P; A —2E) = g(B).
Then, every eigenvalue of A lies al least in one M.

Proof. Let 7 be a complex number outside every M,. It follows that
§(P;; A —AE) > g(B)

fori=1,2,... 71 Consequently, the matrix A — AE is regular by (2,1).

5. Second theorem on the spectrum of a matrix

In this paragraph we use theorem (3,4) to obtain regions in the complex
plane, containing all the eigenvalues of a given matbrix.

(6,1) Let Ky, ..., K (r = 2) be a partition of N, P,= P(K,).Let Abea given
matriz, g€ L a norm, and lef us-denoteby My (1,5 = 1... 7, i == j) the region of
those complex numbers z, for which

G A — ) §(P; A—2B) < g*( > PiAP),

ki1
e k1
Then every S.Qm:ciga.“&a\» lies at least in one of the regions M tj=1..,7;
i +J).
Proof. Let 4 be a complex number such that Anon e My; fori,j=1,...7
and i == j; i e. :
(P A — AE) §(P; A—2B) > g*( D, P,AP).
k=1
kel

Since M P AP,=A—AE — M P, (A.— AE) P, it follows immediately from
k=1 i=1
[ 251

theorem (3,4) that 4 — AE is regular.
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(5,2) Theorem. Let K, .. ., K, (r = 2) be a partition of N, k; the number of
elements of K;, P; = P(K}). Let us define for 0 < £ < 1 the function v(£) =

H S T

— E Gl\<~ —£%), v(0) = 0. Let A be a matriz, B—=4 — M P,AP, geL
" j=1

a norm. If i is a given index (1 =1 = r), let

ey = min {inf [§(P; A —4E) + §(Pi 4 — B).
S
If ¢, > 0 and

= 29(B)
C

<1,

then the region H; of all complex numbers z such that
g(Py A —zE) < g(B) v(o.),

contains exactly k; eigenvalues of A (each of them considered with the correspond-
ing multiplicity).

1

All remaining eigenvalues are contained in the region H = rm H¥ where HY is
j=1
i
the set of all complex numbers for which §(P;; A—2E) < g(B). We haveH;C H¥
and H¥ is disjoint from H. .

Proof. It is easy to see that the assertion is valid if B = 0. Hence let B = 0.
Then 0 < o; < 1 and consequently 0 < v(s;) < 1.

We shall prove first, that H¥ is disjoint from each H¥ for j = 4. If, on the
contrary, i,€ H¥ n Hf(j = 1), then ¢; = G(Py; A — AE)+ §(P;; A — LE) =
< 2¢9(B) = o,6; < ¢;. This is a contradiction.

Further, all the regions Hf and the region H; are bounded: if z &= 0,
g(Pj; A—zB) -~ . 214 G(P.: B) f P -

= = g(P;; B —24) > g(Pj; ) for |z | — oco. But g(P;; Ey =

= [g(P;)]™* = 1 according to (L), so that

g(P;; A —zE) > MM_

for all sufficiently large z.

j=1

J*i
contained in G. This will follow from theorem (3,4) if we prove that for A
non €@ and each pair k, L(k, =1, .., 7, k1) g(P;; 4 - AE) §(P;; A—AE)>
> g%B), since then 4 — AE is regular. ’
To prove this inequality, we shall distinguish two cases:

Now, let G = H,u u H¥. We shall prove that all eigenvalues of 4 are
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(1) A non € Hf and A none Hf. Then

) §(P,; A— AE) > ¢(B)
and
g(P,; A — AE) > g(B)

which implies the inequality considered.
(2) A€ H¥, so that k = 1. Further,
g(P;; A— AE) = ¢ —g(P; A— AE),
which gives
. §(P; A— AB)§(Py; A—AE) = &ei— £)
for & = §(P;; A — AE). Since A€ H¥ and A non €H;, we have eclearly
¢(B) v(a;) < & = g(B). The function x(c; — %) i8 increasing for z A..Mh.“ and,
consequently, in the interval <g(B) v(e:), g(BD- Hence
B — &) > g(B) v(a)(c; — 9(B) (@) =

29(B .
9B) o) ot | = ¢B) (o) |2 —vte]| =8

— B vt |

This proves the desired inequality in the second case. Now, let us denote by
A, 081, the matrix

A@E) =D PAP; + & > P,AP,.

=1 jak=1

1f we define, in a similar é@w as in the theorem,
we-B(§) = A() — 2 PAE) Py
j=1

and the numbers c¢;(§) sma o (&), we o_om@ms
B(&) = £B. ol8) = o oé) = £

It is easy to see that the assumptions of the preceding counsiderations are
fulfilled for every & € <0,1) so that, for every & €40,1), the' matrix A(&) — AE
is regular, if 2 lies in the complement C of . The region C separates H; from
Qruﬁm ¥. Since the roots of a polynomial of a given degree depend continuously
ikt
on its coefficients, the matrix 4 = A(1) has the same number of eigenvalues
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in H, as the matrix 4(0). But the matrix A(0) — AE = M (P;AP; — AP)) is
=1

singular if and only if at least one summand P,AP; — AP;is singular in P;X.

The summand P;AP; — AP; is singular in P;X for k; numbers (each consid-

ered with its multiplicity), all of them lying in H,;.Ifj = i, then P, AP; — AP;
is regular in P;X for 1 non € H}, hence for 2 ¢ H;, H* being disjoint from H,.
Tt follows that H; contains exactly k; eigenvalues of A(0), and consequently,
of A (with corresponding multiplicities). The proof is complete.

(5,3) Theorem. Lt K,, ..., K,(r=2)bea partition of N, k; the number of
elements of K, P; = P(K;). Let A be a matriz, B=A— P,AP;, let g € L.
i=1

Let & be a given index and suppose that
0 < ¢, < min {inf (¢(Ps; A — IE) + §(Py; A—2E));

T kw2
and
,  29(B
g; = QAMva,.—..

Then the region H; of all complex numbers 2 such that
§(P; A—2B) = g(B)v(o))
contains exactly k; proper values of A (each considered with the corresponding
maultiplicity ). ’
r
All remaining proper values of A are contained in the region H = U oy
j=1
j#i
where H¥ is the set of all complex numbers z for which §(P;; A —2B) = g(B).
We have H, C H¥ and H¥ is disjoint from H.

Proof. It follows from our assumption that 0 < ¢, < c¢;, where c; is the num-
ber defined in theorem (5,2). 1t follows that 1 > o; = 0;. Since v is increasing
in the interval <0,1>, we have v(a;) = v(o;)- If H, is the region defined
in (5,2), we have the inclusions

H,C H; C H}.
Let us show now that H* n H is empty. Indeed, suppose that AceHY n HY
for some j = ¢. Hence ,
o < §(Py A—AE) +§(Pp 4 — AE) < 2(B) = oi¢i <&

which is a contradiction. According to (5,2), the region H; C HY contains exactly
k; proper values of A (each considered with its multiplicity) and the region H
contains the remaining ones. 1t follows that H; contains exactly k; proper values.

The proof is complete.
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6. An application of tensor products

In this paragraph we shall recall some notions of th
; ) e theory of tensor prod
This theory will enable us to find a theorem similar t proi A
5,2 i
T o, r to (5,2) but more convenient
Let Z be a given linear space. We denote by Z’ the adjoint space of Z, i. e
the space of all linear functionals on Z. For 2’ € Z' and ze€ Z we denote b N
the value of the functional z' at the point z. Ko
Let X E&. .H\ be two finite-dimensional linear spaces, B(X, Y) the linea
space of @:.U;_Bmmw functionals defined on the pair X, Y. The adjoint space eu
B(X, Y) will be called the tensor product of X and Y and will be &ob%oom vo
X®Y. For z € X and y€ Y, the lensor product x®y of x and y is Qmmmﬁm ’
that element of X ® Y, for which mm

for all b € B(X, Y). It is easy to see that every element of X ® Y can be writ-

ten in the f : ; . 4
In the torm &Wp x; @ y; wherez,€ X and y;€ ¥ and » is the smaller of the di-

mensions of X and Y.

mwcnnrmwu let L(X, Y) denote the linear space of all linear transformations of
X into Y. We shall show that there is a natural isomorphism between the
spaces L(X, Y)and X' ® Y. In fact, it is not difficult to verify that the mapping

Bof X' ® Y into L(X, ¥), which transforms the element { = W z QyeX' QY
=1 :

into the element f(t)e (X, Y) such that g(f)x = MAau x>y, for all xeX
is an isomorphism between X' ® Y and I(X, Y). -

In the sequel, we shall need the notion of the ten i
transformations. Let XY, V and W be linear spaces. MMM Wmowwmwoom WMMMH
mapping « of (X, ¥) ® L(V, W)into (X @ V, Y ® W) in the followin
manner: if A e (X, Y), Be L(V, W), let (A ® B) be the element of EN@%
Y @ W) defined by the relation x(4 ® B) (x ® v) = Ax @ Bv fulfilled f :
each xeX and eachve V.1t is easy to see that « is onto and an isomorphi "
We shall use this fact in the case X =YV =X, V=W = X,, so eMMe Mﬂw
ﬂﬂ@:mﬁou.apaobm considered are operators in X, X, Hmmwooa?m_%w.m e ao
is a basis of Xy, fi. - - ., f & basis of X,, we define the matrix of the Mm.vmwweo:_
A ® B in these bases as the matrix of the operator (AR B)e (X, @ X '
X, ® X,) in the basis ¢;® [ Xt will be denoted by [4] ® [B] where m\i a/ M
[B] are matrices of 4 and B in the respective bases. g

Finally, let us define a mapping y of L(X,, X,)® L(X,, X,) into L{L(X], X,)
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L(X}, X,)] where X, X, are linear spaces. This mapping y will transform an
element te (X, Xy) ® L{Xq X,) into the element (t) € LLAX X5),
L(X, X,)] such that

y(0) & = Bolt) BE.

for each &€ L(X}, X,). Here f is the isomorphic mapping of X, ® X, onto
L(X}, X,) and « the isomorphic mapping of L(X., X;) @ L(X,, X,) onto
LX, ® X5, X; ® X,) defined above. Tt is easy to see that yisan isomorphism.

Now, let us turn to the case when normed spaces are considered. Let g and k

be norms in X and Y respectively; we define a norm p = t(g; b) in L(X, Y)
in the following manner. If Ae(X, Y), we put

p(4) = sup (h(42); (@) = 1).

This is the usual norm of a linear transformation. If X = Y, we have the case
of linear operators in X; it is then customary to write simply g for (g, 9)-
If 7 is the real line E,, we have the case of linear functionals on X . The norm
(g, | . |) on (X, E)=X'is called the adjoint norm of g and will be denoted by

g'. Thus .
gy =sup (| <&y > @) = 1).

If X and Y are linear spaces with norms g and k, we define a function .@Hw
= (g, k) in the following nianner: if Ael(X,Y), we put

4y = inf (W(4x); g(@) = 1)
Clearly we have g(4) = 0 if A is singular. If 4 is regular, it is easy to show
that ¢(4) = (p(A™)™ here p = t(k, g) on Ly, X)) fX=1Y, we write
simply ¢ for (g, 9) in conformity with the convention already introduced for

matrices.
Further, it will be necessary to introduce a norm into tensor products.

There are many ways of defining a reasonable norm in X ® Y. A norm ¢ in
X ® Y is said to be a crossnorm of g and h if

He @ y) = g(@) h(y)

for all ze X and y€Y . Let & bean arbitrary crossnormof g andhandletucX @Y.
If u= M z, ® y;, we have

| Ju) = 3 0w ® ) = 2,9 hy)-
Hence 9(u) < y(u) where y =% (g, ) is given by
y(w) = inf AM gl@;) bly.); Mﬁ. @Y= §v.
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Tt is not difficult to show that y is a crossnorm of g and k; it follows that
(g, ) is the greatest crossnorm of g and k. Another crossnorm may be obtained
in the following manner. There is an isomorphic mapping § of X®Y on
L(X’', Y). We shall define a norm 4 = (g, k) on X ® Y by A(u) = k(f(u))
where k is the norm =(g’, ) on L(X’, Y). Let us show that 1 is a crossnorm of g
and . Indeed, we have A(z ® y) = k(B(z ® y) = sup (M(f(x @ y)r'); 9'(x") =
< 1) = sup (M(<z, ') y); ¢'(@) = 1) = g(x) hiy). _

Let us consider now a special case where the norms in question may be easily
computed. Let p be a real number p = 1. Suppose that X and Y are spaces
with bases ey, . . ., €, and fi, . . ., f,, respectively and that the normsg and k
are given by

ki3

L n 1
%TngsegmgTLMgsﬁ

the numbers & and #; being coordinates of » and y in the given bases. Let
e ... e, be the dual basis of X". If a, is the matrix of an 4 e (X', Y)in the

1
bases e, . . . ey and fy, . . ., [ PUt Gpy(4) = AM [ ay _avﬂ.gmgsﬂoeromo:oémam
ik ’

lemma.

(6,1) Let p be a real number = 1. Let X and Y be lincar spaces with 1, -norms
gandh. IfueX ® Y, put

Ny () = Gy(B(w))
where f(u) € L(X', Y). Then ny, is @ crossnorm of g and k.

Proof. Take an # ® y and put 4 = f(x ® y). Take an z' € X' and put
» — Az'. Since z = Ax' = (x, 'y y we have {; =1, M &, &, the numbers

Nommetien

& Mo £ & being coordinates of z, y, z, «' in the given bases. It follows that
5y :

a;, = n:£, whence AM I @i EM = g(x) h(y). The proof is complete.
i,k

(6,2) Let K;CN, P; = P(K,) and X; = P,X where i = 1,2. Let g be a norm
on X and let p be a crossnorm of g, and g, where g; are the norms induced on
X, byg. Let Ac (X, X) and let 2 be a complex number. If we write simply p for
op, p) in L(X; ® X,, X, ® X,), then

Ay ® Ey — By ® Ay) < §(Py; A — AE) + (P A — 2B),

where A, = P, AP, (considered on X; ) and E; is the identity operator on X,
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Proof. For i = 1,2 there exist non-zero vectors y;€X; such that

g(Ay; — 24:) -
= g(P;; A — AE).
g(y;) ot )

We have, by definition of p

%0 o(t)
eX,® X,

Now the last expression is majorized by the analogous quotient with ¢ =

= Y5 @ Ya where y;€X; are defined above. This quotient is, with respect to
the definition of «, equal to

pAy QY — 1 @ Aqys) _ (A — Y1) B Y —Us ® (Asys — 1y5)) <

Py ®Ys) Py @ Ya)
< Ay — M) ® Ys) + Py, @ (Aoys — 2Y,))
- P11 @ Ys) Py, @ Ya)

Since p is a crossnorm of g;, and g,, the last sum is equal to

g(Ay, — Ayy) Q?wm@w — E\mv SP. A o
= i A— AE P,; A—AE
PO + | 9(%2) g(Py )+ g(Py; 4 )

and the proof is complete.

(6,3) Theorem. Let K, ..., NmkﬁWwng%g:«@.os\a\Zv W\HWQ&.V,
X; = PX, F., the number of elements of K. Let A be a matriz and put A; =
= P,AP; on X; . Let geL and let g; be the norms induced on X; by g. Let pys
be crossnorms of g, and g, and let us write simply P, for ©(pes Prs) o0 L(X, & X,

X, ® X,). Suppose that, for some index 1,

¢ = mwws Pifl(d; ® E;,—E; ® 4;)) >0
gﬁu..umm.,q
and .
2

forB=A— P;, AP;.

=1

Then, the region H; of those complex numbers z satisfying the inequality
§(P; A —zE) < g(B) v(o))

(v{x) defined in (5,2)) contains m&a.&@ k, eigenvalues of the matriz A, each of them
considered with the corresponding multiplicity.
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r
All remaining eigenvalues of A are contained in the region H = 4C~ Viky
i
i
where H¥ is the region of those complex numbers z, for which

§(P,;; A—2E) <g(B).

The regions H and H; are disjoint.

Proof. The present theorem is an immediate consequence of theorem (5,3).
It is sufficient to show that the number c¢; fulfills the assumptions of (5,3);
this, however, follows from (6,2). : :

Remark. Lemma (6,1) enables us to compute pi(x(4; ® E, —E, @ A4))
in the most important case when g is the l,-norm. Then, if o= t(Gq), Gp)
w&.%RTAm QR E;— E, ® .%Lv = o{[4,) @ TE; ] — [E] ® T&LY where [4], e
are matrices of the operators A4, ... in the given bases. This last expression
can be easily computed for p = 1,2 or oo (see, €. . [3], p. 62—63).

7. Special eases

In this paragraph we shall spezialize some of the results obtained. First,

consider the case when the sets K, . . ., K, contain only one element each, so
that r is equal to the order of the matrices, r = .
It is easy to see that for every norm g€ L and every matrix 4

g(P; A—AE) = lay— 4},
pla(d; ® B, — B; @ 4] = | @ — a5 |-
If A is a given matrix, let M(4) be the matrix with elements m; = 0 and
my; = ay; for ¢ == j.
The theorems (3,4),.(5,1) and (6,2) have the following consequences:

(7,1) Let A = (a;)) be a mairiz, let ge L. Suppose that
| aa;; | > g3 (M(4))

foralli,j=1,...,mn, i == 5. Then 4 is regular.

(7,2) Let us denote, for a matriz A = (a;) and a norm geL, by M = j,
i,j=1,...,mn), the region of all complex numbers z such that

|a;—z| la;—z] = gA(M(A4)).
Then, each eigenvalue of A lies al least in one of the regions M.
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(7,3) Let A = (ay;) be a matrix, let ge L. Let 1 be a given index. Suppose that

¢; = min {a; —a; | > 0.
i

QoAsnmﬁ%@.

< Hrt&g the circle

1—1-—o?
lag — 2 | < g(M(4)) IT
contains exactly one eigenvalue of A.

Finally, we shall specialize the theorem (6,2) for the case when r — 2 and

one of the sets K; contains a single element only.

(7,4) Let A = (a;) be a matriz. Let geL and suppose that g fulfills (L,) as
well. Put

@ == QAH.u ov vy OVu Q\ = Q\Aﬂv ou * " -uOVw
w = g(0, gy, Agy, + - 5 ), ©' = g'(0, Gya, Qyg, -+ - G1y)-

Let K = {2,3,...,n}, P = P(K). Let us assume that

c=gP;, A—auk) >0
ard that : .
2 max (gw’, o'w)
c

o < 1.

Then the circle | a;; — z | < v(o) max (g’ ¢'®) contains exactly one eigenvalue
of A. All remaining eigenvalues of A are contained in the region

§(P; A — NE. < max (o', ¢'w),

which is disjoint from the above circle.

Proof. The present theorem will be an immediate consequence of (6,3)
if we prove that
c=p(x(d, ® E,— B, @ 4,)),

g(B) = max (ew’, ¢'w),

with A;= P, AP, and B =P AP, + P, AP, where P,=Pand P, =
= P(K,), K, = {1}. In the first formula, we write p for =(p, p) where p is
a crossnorm of g, and g,. .

Takeg(B) first. Put R = P, AP,, S = P, APy, so that g(B) = max (g(R), g(3))
by (L,). According to (L), we have g(R)=g(PAP,)=g(P,BP,) < g(B)and simil-
arly, g(8) < g(B). It follows that g(B) == max (g(R), g(S)). Let a, be the vector
with coordinates (0, @y, . - -, @), let af be the functional with coordinates
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(0, Gyas -+ -» T Similarly, let e, be the vector (1,0,...,0)and ¢| the functional
(1,0,..., 0). ‘We have, for each zeX

Rx = <z, a) e,
Sz = <=, mw.v ay

'

whence g(B) = ¢'(@}) gle,) = w'e and ¢(8) = g'le) g(@) = ¢
Further, consider p(x(4; ® E,—E, ® 4,)). We have, the dimension of
X, being 1,

plx(4: ® E,—E, ® 4,))

ple(d; ® By — E, ® 4,) = WMW. () =
e X; ® X.

= inf %ARTAM QE,—E® A (2, ® Zy)) —

la, ® w0 plr, ® Z,)
— inf p(Ax; @ X — %y ® Axs) —  iaf %A&.H ® (ay®e — Ayzy)) _
l§ owbsn%o plx, ® L) z; @Tt0 plz; ® x5)

_nsma§mmx%&u@%:5@lmy
EE 2 )

8. An application to normal Emﬁ.ﬁam\

In this paragraph we shall specialize the preceding results in the case that
the matrices considered are normal and the norm gL is the Euclidean one.

First, we shall prove two lemmas.

(8,1). Let M,, M, be two closed non-void sets of the complex plane C. Let
zeC. s
Then v
| THM,, M) < el M) + ez M)

where o denotes the distance in C.

Proof. There exist points m, €M, and m,€ M, such that o(z, M) = o(z, m;)
As = rwv. ZOS @C—NC va M @ASTS\JV M QAN“ Swv + @ANq SNV = mﬁau gmv |T QAN‘ va
which completes the proof.

(8,2). Let A bea normal matriz, let h denote the Buclidean norm g i X.
Let z be a complex number, M the set of all eigenvalues of A. :

The .
" A — 2E) = oz, M. .
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Proof. Since the matrix 4 is normal, there exists a unitary matrix U such
that UAU* is diagonal. According to the definition of kit is easy to see that

WA — 2E) = MUAU* — 2E) = min | 2, —z |

where 2, are the diagonal elements of UAU*, consequently the eigenvalues

" of A. Thus, (A — zE) = e(z,M) and the proof is complete.

(8,3) Theorem. Let A be a matriz, K, . . ., K, a partition of N, P; = P(K}),
k; the number of elements in K;. Let the linear mappings A; = P; AP; be normal
forj=1,..,r. Lt M(j=1,... 7) be the spectrum of A; in P;X, let c; =
= min o(M;, M,) for a given index i. If ¢; > 0 and
jE
. 2K(DB)

g; = G\ <1

i

where B = 4 — M P,AP,,
j=1
then the spherical neighbourhood R, of M, consisting of those complex numbers z,
Sfulfilling .
o(M;, z) = MB) v(a;)

(v(x) was defined in (5,2) and b is the Buclidean norm), contains exactly k; eigen-
values of A, each considered with its multiplicity. The remaining eigenvalues are
contained in. the region

o( U M;, 2) = k(B),

i%i )
disjoint from the preceding one.
Proof. This is an immediate consequence of theorem (5,3) since
¢, < min [inf (WP 4 —2E) + MP;; A — 2E)]
e z

according to (8,1) and (8,2).

Remark. The number o(M;, M;) is equal to &([4;] ® [E;] —[£:] ® [4,)
where @ = (G, G») (cf. the remark following (5,3)). This follows easily
from the fact that 4, = U,D;U¥, A;= U,;D;U} where U,, U; are unitary
and D;, D; diagonal with elements from M;, M, respectively.
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HEKOTOPLIE HEPABEHCTBA JJIfl CHIEKTPA MATPUIIBI
MUPOCIAB OUAJNEP u BIACTUMMIL NITAK

Beiroan

B macroameii pabote paccMaTpHBaeTca ciefyloman sanasa: Ilyers Gymer A marpmia
DOPANKA 1 ¢ KOMIUIGKCHEIME 3JTeMeHTaMu &, . HyMmHO OTNpefle nTh TaKylo obnacts G KoM-
NJACKCHON IJIOCKOCTH, 4T00b Bee cmexTp MaTpuuu A comepaincs B G. Pesyibratsl aTOro
THDA BHITEKAIOT U3 ACCeIoBannil yenoBHil peryaapHocTy Marpam. Tax, HRanpaMep, OCHOBHBIH
peayasTar 0 Kpyrax lcpwropiHa BHTERAeT ¥3 RIACCHYECKOTO YCIOBUA PeryJapHOCTE
Anmamapa. Bce u3BeCTHMIC Pe3yJbTaThi 3TOTO THI& HCHOIBIYIOT aGCONIOTHBIE BeJIMYMHEL
S7eMEHMTOB paccMaTpuBaeMoil Marpuupl. OILEHKH lOJNydeHHbEe B sroit pabore comepIar
TONBKO HOPMB HEIMATOHATRHON 4ACTH MATPUIE! A, IPH UeM HeIUArOHaNbHA aCTh MATPHIHL
mormMaerca B Golee obmeM cMBlcie, a HMEHHO TAK, 9TO JONYCKAOTCA W MATPHIH pas-
JieICHHBIe B KJIETKH.
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